
Applied Geography for sustainable Living

AG-IWM © 2023, G. K. Lee All rights reserved. Geography may not change the world, but it will change the way you see it.

A Grassroots Approach to Integrated Watershed Management: Doing Right in an Unjust World (with actions at your home)

AG-IWM © 2023, G. K. Lee All rights reserved.

The water drop graphic is a composite by G. Lee using Creative Commons images modified for this presentation. The Geographic Systems Model is a G.Lee Trademark.

Contents

1. Integration

2. Watershed

Using the Geographic Systems Model to systematically study Nature with a focus on watersheds.

Terrestrial surfaces the water flows over and through powered by gravity.

4. Actions at Your Home

You have a role in making sure your water is safe to drink.

3. Management

Education, and science in particular, helping you to understand the various local pollution sources of your drinking water and what you can do at home to prevent pollution and improve the value of your home and community.

AG-IWM © 2023, G. K. Lee All rights reserved. This presentation is given in the spirit that the full power of knowledge is realized only when it is shared. --unknown

Functional Definitions*

Integrated: Combined comprehensively and holistically into a system to nurture synergy using both linear and non-linear thinking. Watershed: Any terrestrial surface intercepting and conducting liquid water to move horizontally or vertically under the influence of natural forces. **Management:** The human activity of allocating resources (e.g., people, time, materials, money, etc.) for the mutual benefit of society and the environment for long-term sustainability.

AG-IWM © 2023, G. K. Lee All rights reserved. * These are definitions developed and used in Applied Geography for Sustainability lessons, activities, and programs.

AG-IWM © 2023, G. K. Lee All rights reserved.

This is an Applied Geography for Sustainable Living (AppGeog) presentation

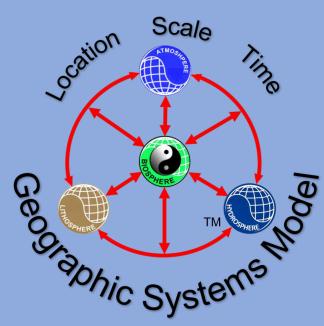
Unless otherwise indicated, photos in this presentation are the exclusive property of G. K. Lee. Use of G. K. LEE copyrighted materials are available for private/non-commercial educational use without written permission if no changes are made, no fee is charged, and proper attribution is made to the Applied Geography for Sustainability or G. K. Lee.

Commercial use of the materials is prohibited without written permission.

E-mail: appgeog4sl@gmail.com

Advisory Note

This presentation is formatted for viewing on a single computer screen by a few people.



For large group presentations, a narrator should read the slides with text not readily legible to the audience.

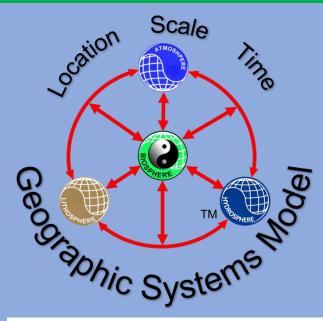
AG-IWM © 2023, G. K. Lee All rights reserved.

The Geographic Systems Model

This is a conceptual model of the Earth (e.g., air, water, land, and living organisms). It includes all life, physical, and social sciences to study the distribution of phenomena on Earth.

The arrows are reminders of the world is highly interconnected. The model can be used anywhere on Earth, at any level of detail and time of year or hour of the day.

AG-IWM © 2023, G. K. Lee All rights reserved. **Note**: The <u>Geographic Systems Model</u> is a framework to systematically compare/contrast places on Earth.


Key Geographic Concepts

Location: In geography, latitude, longitude, and elevation. In mathematics, X, Y, and Z. Scale: On maps, it is the ratio of the distance on the map to the distance on the ground. It also refers to the level of detail of a study (e.g., global, regional, local or macro, micro, nano, etc.). **Time:** In geography, seasonal/diurnal, or chronological (e.g., past, present, future). Change over time is of interest to geographers.

AG-IWM © 2023, G. K. Lee All rights reserved. Note: To think geographically is to think in four dimensions: latitude, longitude, elevation, and time. Geography views the world in a spatial-temporal framework or a space-time continuum. FFI: Geographic Systems Model <u>#1</u> <u>#2</u>

The Geographic Systems Matrix

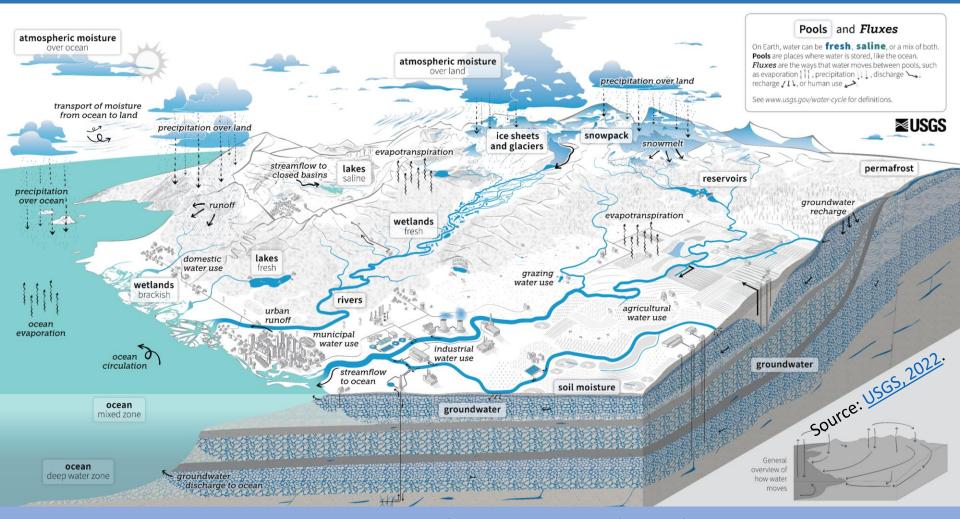
Location	
Scale	
Time	
Atmosphere	
Hydrosphere	
Lithosphere	
	Flora
Biosphere	Fauna
	People

AG-IWM © 2023, G. K. Lee All rights reserved.

Organizing observations with the **Geographic Systems Matrix (one** for each place) makes it easy to compare and contrast different places (or the same place at different times of day or seasons) to find patterns in distributions. It is interesting to see the different ways people interact with their environments (i.e., physically and socially) even when living in the same or similar locations.

Advisory Note

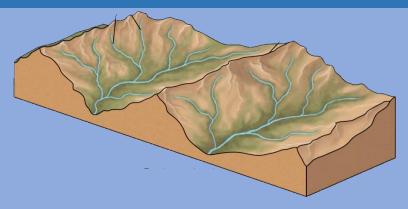
The Biosphere is the realm of all living organisms on Earth. People are shown as a green version of the Vitruvian Man superimposed on a Yin-Yang symbol (a reminder of the non-linear dynamic balance


of forces in the world). People are surrounded by their culture which is the window through which they perceive the world. Different cultures have different perceptions. Perceptions are not right or

AG-IWM 2023, G. K. Lee All rights reserved.

wrong; they are just different.

The Water Cycle


AG-IWM

Water vaporized from the Earth's surface can return as rain, snow, or ice and can be changed from solid to liquid. The cycle repeats and water is recirculated on Earth.

A Watershed is a Landscape Feature

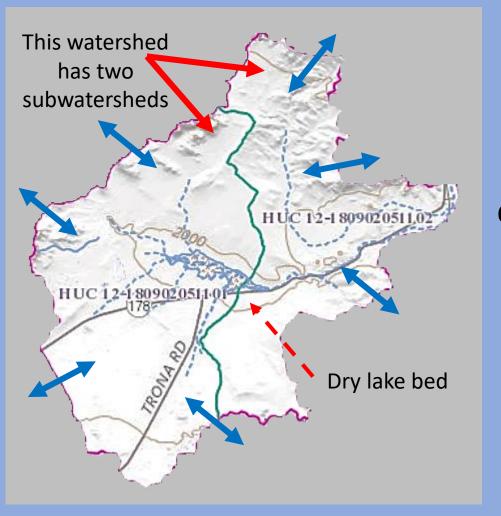
Atmosphere		
Hydrosphere		
Lithosphere	Structure	
	Process	
	Slope	
	Drainage	
	Flora	
Biosphere	Fauna	
	People	
L	1 COPIC	

The structural geologic processes shape the land causing it to have slopes (i.e., different surfaces and angular orientations). Water on the surface drains off the slopes under the influence of gravity flowing overland or in channels (streams). Moving water can carry soil downstream (erosion). A drainage basin is another term for a watershed.

AG-IWM © 2023, G. K. Lee All rights reserved.

A Watershed with External Drainage

The red line is the drainage divide, a ridge (high point) between watersheds. The area inside the red line is the watershed with external drainage. Rain falling over this area will flow into the streams and out of the watershed.

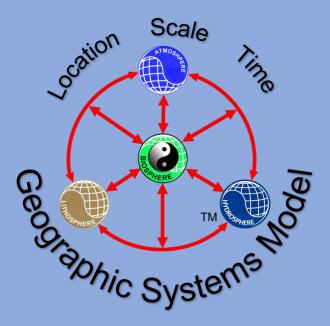


AG-IWM

2023, G. K. Lee

Note: A watershed with external drainage has water flowing out of the watershed.

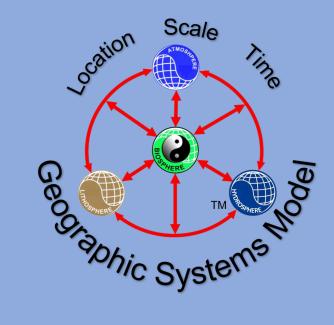
A Watershed with Internal Drainage



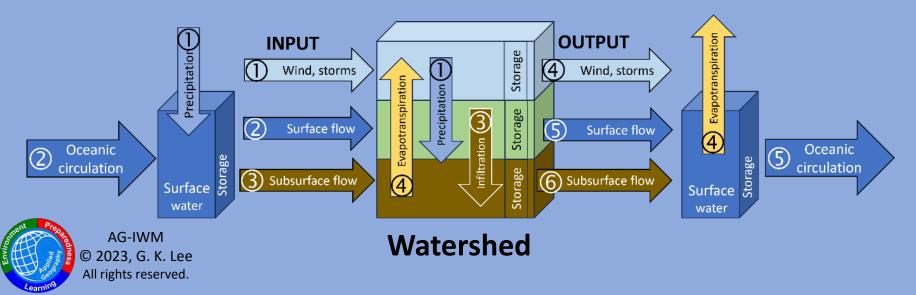
The red line is the drainage divide where water will flow in either direction in one or another watershed. In this case, the streams do not flow out of the watershed. If there is more rain than evapotranspiration, a lake may form. If there is more evapotranspiration than rain, there may be a dry lake.

AG-IWM © 2023, G. K. Lee All rights reserved. **Note**: A watershed with internal drainage does not have water flowing out of the watershed. .

Viewing a Watershed Holistically


Atmosphere	Weather, climate		
Hydrosphere	Fresh, brackish, salt		
Lithosphere	Landforms, soils		
	Flora	Plants	
Biosphere	Fauna	Animals	
	People	Humans	

Use the geographic systems matrix to systematically describe the natural and human aspects of the watershed. Indigenous people consider humans as part of the natural landscape. Western science separated humans from Nature. This disconnect explains why some Westerners try to "conquer" or control Nature.

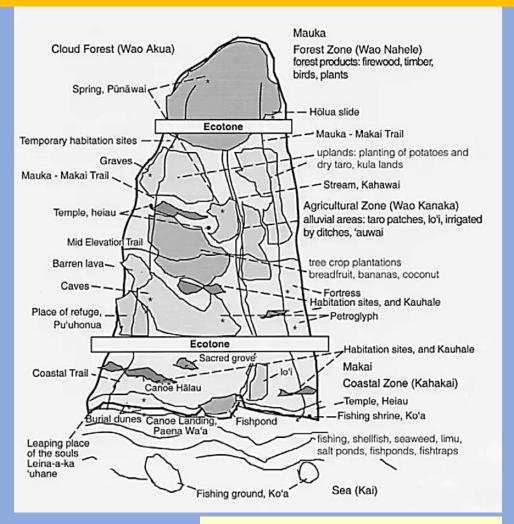


AG-IWM © 2023, G. K. Lee All rights reserved.

Basic Water Movement

The block diagram below shows the possible ways water can get into and out of or be stored in a watershed. Try following the water paths between the environmental spheres in the geographic systems model.

Managing a Watershed



You can strive to master understanding and working with Nature, or you can strive to master Nature by imposing your will and fighting against Nature. **Hint**: Nature has been around a lot longer than people. --G. Lee

AG-IWM © 2023, G. K. Lee All rights reserved. **Note**: Indigenous people tend to live closer to Nature in smaller groups and traditionally have a more subsistence lifestyle.

The Hawaiian Ahupua'a System

FFI: Land Titles of Hawaii

AG-IWM © 2023, G. K. Lee All rights reserved.

This traditional Hawaiian land tenure system was based on water for agriculture because 1) each Mokupuni (island) had 2) Mokus (districts) usually a Ko'olau (windward, wet) and Kona (leeward, dry) district, 3) subdivided into Ahupua'a (vertical zones of rainfed and irrigated agriculture extending from the mountains to the sea. An Ahupua'a is a complete ecological system shaped like a pie slice of an island.

Advisory Note

Ancient Hawaiian culture relied on oral traditions to transmit information through time. The arrival of Europeans in 1778 set

the stage for cultural conflict in the islands that persists to this day, especially over land ownership. It centers on the oral traditions of the native people regarding their laws vs.
Western laws in written records. The Western culture (science and technology) makes their culture dominant and sets the context that non-Western cultures are presumed to be inferior. AppGeog prefers to study Nature and natural systems as a point of reference for sustainable living.

Differences of Environments

The table below is a general summary comparing and contrasting the environmental settings of people living close to Nature vs. people living in constructed areas.

		Natural	Constructed		
		Indigenous	Urban/Suburban	Rural	
. <u>×</u> Location		More Natural	Highly Built	Less Built	
Matrix	Scale		More Local	Local to Regional	Local to regional
	Time		Seasonal	Manipulated seasonal	
em	Atmosphere		More Natural	Polluted	Less Polluted
Systems	Hydrosphere		More Natural	Polluted; Processed	Polluted; Some processed
	Lithosphere		More Natural	Highly changed	Moderately changed
aph	Biosphere	Flora	More Natural	Much less natural	Mostly cultivars
Geographic		Fauna	More Natural	Mostly domesticated & feral-domesticated	Mostly domesticated
<u> </u>		People	Smaller groups	High density	Dispersed

AG-IWM © 2023, G. K. Lee All rights reserved. **Note**: Indigenous people tend to live closer to Nature with lower technology and a more traditional subsistence lifestyle.

Differences of Social Organization

The table below is a general summary comparing and contrasting the social organization of people living close to Nature vs. in constructed areas. Modern studies in anthropology and sociology can be eye opening.

	Natural	Constructed	
	Indigenous	Rural	Urban/Suburban
Mode	Egalitarian	Patriarchal	Patriarchal Bureaucratic Hierarchy
Who	Elders, Council	Household head	Elected government officials
What	Group decisions	oup decisions Family decisions Community decisions	
When	As needed	As needed	As needed and by manufactured consent*
Where	Local	Local	Remote; apart from the general public
How	Group	Individual or group	A select group of decision-makers
Why	Group Survival	Will of the leader	For the benefit of the rich and powerful at the expense of the poor and voiceless*

* Chomsky, N. (2017); Herman, E.S. & Chomsky, N. (2011).

Existing Laws & Regulations

Federal/			
National	International/		
	Interstate		
State			
County			
City			
Local			
Civic/NGO			

Water Resources regulations depend on the U.S. Environmental Protection Agency enforcing the Clean Water Act of 1972 using permits for water withdrawals, waste discharging, and setting water quality

standards. All levels of government harmonize with federal regulations. The implementation depends on local conditions, budgets, and the outcomes of court cases, as well as changes in water supply and demand over time.

Institutions Needed for Implementation

In many places money is the main measure of value. In less developed places, impoverished and marginalized people may not have access to social institutions for funding watershed management programs.

		Natural	Constructed	
		Indigenous	Industrial	
	Governance/Administration Legal/Legislative	The people / Treating, state, county, etc, and local government		
Financial		usually by direct contact and interaction with little to no outside help or financing. *	Grants	Federal, state, county, city, and local governments; private sources, NGOs
	Financial		Taxes	Federal, state, county, city, and local governments
			Fundraising	NGOs, Local special events
			Private	Landowners pay for work on their land.
STREE	AG-IWM © 2023, G. K. Lee All rights reserved All rights reserved			

All rights reserv

Perceptions of Management

This summary table contrasts general differences in governance methods for people living in a more natural vs. constructed environment.

	Natural	Constructed	
	Indigenous	Industrial	
Social Order	Egalitarian; Horizontal	Patriarchal; Hierarchical Top-Down	
Gender	Egalitarian	Male dominant	
Management Decision-making	Communal. for the general welfare	Select Group for special interests	
Childcare	Communal	Nuclear and single parent	
Value Measure	Social Cooperation	Money	
Residential mobility	Mobility between kinship and non-kinship groups promotes collaboration*	Ethnic residential segregation persists and deters inclusiveness in society**	

* (UCL, 2022). ** (Taeuber & Taeuber, 2009)

Basic Grassroots Watershed Issues

From a grassroots perspective, watershed management (including stormwater) is based on dealing the two basic water problems: too much water (floods) and too little water (droughts).

AG-IWM © 2023, G. K. Lee All rights reserved.

Note: Many climate change models show an increased frequency of severe weather events (e.g., heavy rains, floods, and droughts.

Grassroots Watershed Management

If you own the land, you need to protect it. If you don't own the land, you need to use it to eat and feed your family first so you can survive. A swab is used for preparatory cleaning Soil, for a fresh start. In a watershed, this starts with protecting the soil to reduce Water, erosion, soil damage, and to improve its moisture retention and fertility. For And water, you must slow its movement on the land and store it in the soil. **B**iodiversity Protecting and promoting biodiversity improve soil fertility and moisture retention. AG-IWM

2023, G. K. Lee All rights reserved.

Soil is the Soul of the Watershed

Soil is the culmination of the abiotic and **V**ocation Scale the biotic components of climate (heat ? Geog and moisture of the atmosphere and aphic Syster hydrosphere, interacting with the rocks and minerals of the lithosphere) and the organic matter of the biosphere. Air Water ~20-30% The watershed's slope orientation, Organics ~5% ~20-30% drainage, land cover, land use, Minerals and climate, affect the water quantity, ~35-45% quality, and availability over time. This is the holistic view of a watershed. AG-IWM

© 2023, G. K. Lee All rights reserved.

Protecting the Soil Protects the Watershed

Erosion removes soil from the watershed, disturbs the biosphere, reduces water quantity and availability, degrades water quality, and reduces the usefulness of the land.

Hardly Visible		Very Visible	
Rain Drop Impact; no water channel flow.		Water flowing	; in a channel.
Splash Erosion Sheet Erosion		Rill Erosion	Gully Erosion

AG-IWM © 2023, G. K. Lee All rights reserved. FFI: <u>AppGeog Recognizing Soil Erosion</u> (Intro. To AppGeog Soil Management Methods)

Slow, Hold, and Conserve Water

- 1. Slowing the flow of water reduces its erosive power, and gives it more time to soak into the ground.
- 2. Improving soil texture and structure helps to increase water infiltration and soil moisture retention rates to improve drought resilience.
- 3. This in turn improves soil health and chemistry resulting in enhanced plant chemistry interaction (aka fertility) without the use of chemical fertilizers.

AG-IWM © 2023, G. K. Lee All rights reserved. FFI: <u>AppGeog Reducing Soil Erosion</u>

(Intro. To AppGeog Soil Management Methods)

Basic Soil Erosion Mitigations

Cover all bare soil from direct exposure to wind, rain, snow, ice, and sunlight.

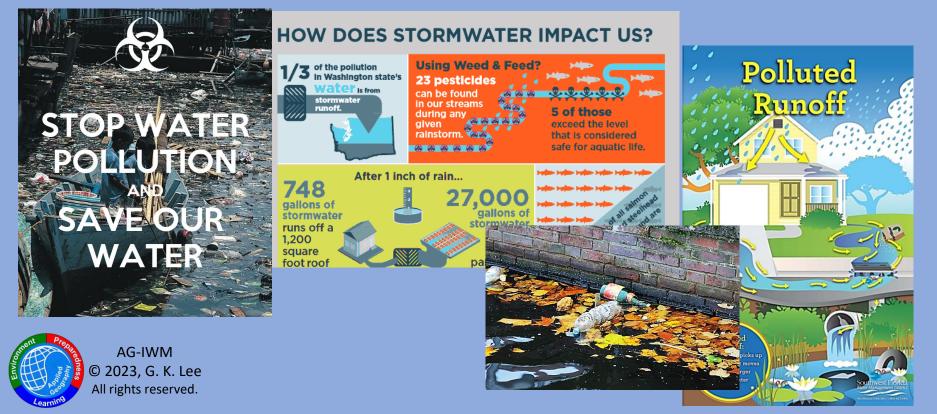
AG-IWM © 2023, G. K. Lee All rights reserved. FFI: <u>AppGeog Reducing Soil Erosion</u> (Intro. To AppGeog Soil Management Methods)

Improve Soil to Resist Erosion

Maintain healthy soil organisms by not using chemicals like herbicides (weed killers), pesticides (bug killers), fertilizers, or spilling hazardous materials on the soil.

AG-IWM © 2023, G. K. Lee All rights reserved. FFI: <u>AppGeog C.O.M.P.O.S.T. #1</u> <u>#2</u> <u>#3</u> (Intro. To AppGeog Soil Management Methods)

Water Quality: Who's Responsibility


Don't Be Your Own Worst Enemy You drink and use water every day. Do you know or just assume you know the answers to these questions? Yes No Do you know its source? Do you know it is safe to drink? Did you clean and purify it before use? Do you know where your dirty water goes? □ □ Could you clean dirty water for your use?

AG-IWM © 2023, G. K. Lee All rights reserved. **Note**: Very few of us know enough to make and deliver clean drinking water for use in our homes. Yet we seldom think of the thousands of invisible workers who make sure we get safe water to use every day.

Does Stormwater Pollute Your Drinking Water?

Rain falls on everything in the storm area and washes chemicals, trash, oil, soil, bacteria, and microbes in stormwater from your yard into the streets, storm drains, and streams.

Non-Point Source Pollution (NPS)

FFI: Click on the number to get the publication

AG-IWM © 2023, G. K. Lee All rights reserved. Since the Clean Water Act was passed in 1972, most of the major industrial polluters have been identified and the cleanup began. Today, NPS is the major source of water pollution. If you have or use anything that gets wet in the rain, you could be a part of the NPS

problem.

We Need You to Do Your Part

Water, like air, is necessary for nearly all living organisms to survive. About 46% of the world's people cannot get clean drinking water daily. Don't take your clean water for granted. Appreciate your easy access to it. Respect the workers who make your clean water possible and do your part to stop water pollution from your yard and home.

AG-IWM © 2023, G. K. Lee All rights reserved.

Adapting Farm Actions for Your Yard

Many of the no-cost/low-cost, notech/low-tech soil and water management methods used on small rural subsistence farms can be

adapted suburban and urban yards and homes to reduce pollutants from yards getting into stormwater and into the streets, storm drains, and streams.

Many Actions Can Be Practical School Lessons

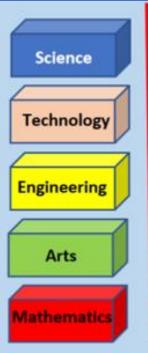
Many actions and activities can be adapted and used as classroom lessons rather than doing

GLS Cb-E P.A.L. development process begins with gathering local input (relative to GLS Divisions) to develop a draft lesson to meet a specific community need. The diagram below summarizes the major steps in the P.A.L. development process. Revisions and updates are made as local conditions change. Thus, the lessons are always relevant.

General P.A.L. Process

- 1. Start C-bE Project
- 2. Gather Local Input
- 3. Develop Draft P.A.L.
- 4. Beta Test P.A.L.
- 5. Evaluate Beta results
- 6. Revise (if needed)
- 7. Finalize
- Review & Update as needed.
- 9. Finalize Update

sample problems from a textbook.


AG-IWM © 2023, G. K. Lee All rights reserved.

FFI: AppGeog Community-based Education

Community-based Education for Integrated Watershed Management

Traditional School Bureaucracy

Traditional segmented single subject classes create an artificial compartmentalization of knowledge. This added layer of difficulty hampers a student's ability to see how the bodies of knowledge interconnect. It limits their understanding. Also, students are not active in the community while learning.

GLS Community-based Education Method

GLS C-bE lessons use Science, Technology, Engineering, Arts, Mathematics Integrating Nature &

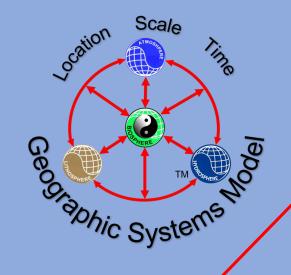
Geography simultaneously outdoors in the community. It uses Teach-backs and community service projects. to verify competency

and comprehension rather than written examinations. Students can actively contribute to the community while learning.

AG-IWM © 2023, G. K. Lee All rights reserved.

FFI: AppGeog Community-based Education

STEAMING Rather than STEM/STEAM

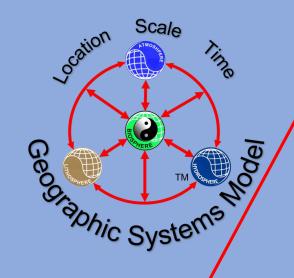

S.T.E.A.M.I.N.G. (Science, Technology, Engineering, Arts, Mathematics Integrating Nature and Geography) gets students outside the box of the classroom. This encourages them to learn and think outside the box.

FFI: AppGeog Community-based Education

AG-IWM © 2023, G. K. Lee All rights reserved.

Know Your Local Natural Situation

Location	
Scale	
Time	
Atmosphere	
Hydrosphere	
Lithosphere	
	Flora
Biosphere	Fauna
	People


AG-IWM © 2023, G. K. Lee All rights reserved. Use the Geographic Systems Model and Matrix to organize. Location: Get geologic, topographic, soil, and hydrologic maps of your place.

- <u>https://www.google.com/earth/abo</u> <u>ut/versions/</u>
- <u>https://www.usgs.gov/tools/nation</u> <u>al-map-viewersoil</u>

Atmosphere: Get climate and climate change data for your place.

- https://www.usclimatedata.com/
- <u>https://www.climate.gov/maps-</u> <u>data#dataset-gallery-block</u>

Know Your Local Natural Situation

Hydrosphere: Get your watershed info. (get to the smallest size watershed unit for your home)

- <u>https://mywaterway.epa.gov/commun</u> <u>ity</u>
- https://apps.nationalmap.gov/viewer/

Location		
Scale		
Time		
Atmosphere		
Hydrosphere		
Lithosphere		
	Flora	
Biosphere	Fauna	
	People	

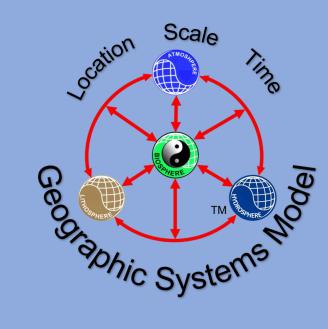
AG-IWM © 2023, G. K. Lee All rights reserved. **Lithosphere:** Get topographic and land use/cover, and soils info near your home.

- https://apps.nationalmap.gov/view er/
- <u>https://websoilsurvey.nrcs.usda.gov</u>
 <u>/app/WebSoilSurvey.aspx</u>

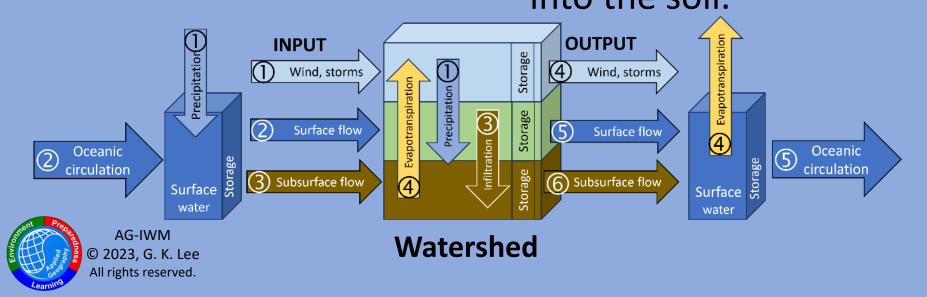
Know Your Local Natural Situation

Location	
Scale	
Time	
Atmosphere	
Hydrosphere	
Lithosphere	
	Flora
Biosphere	Fauna
	People 🗸

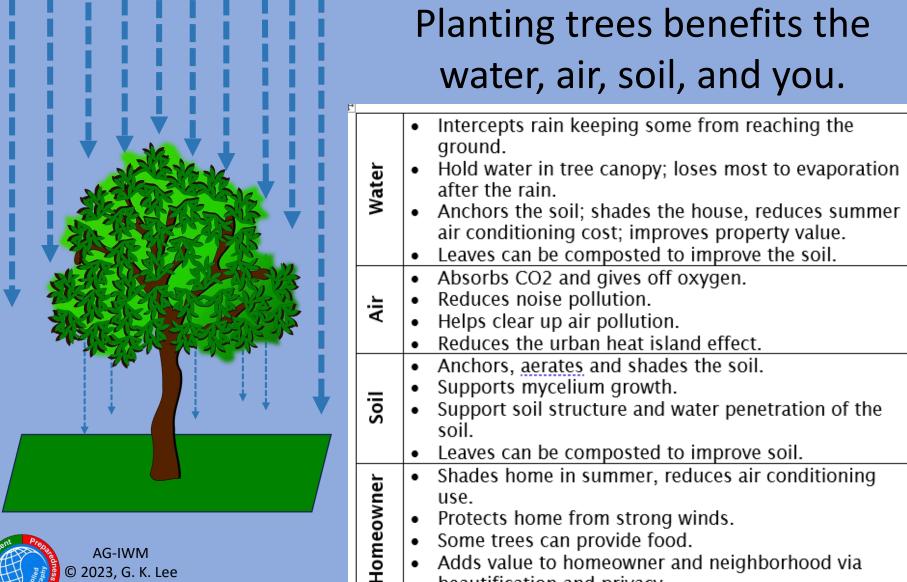
AG-IWM © 2023, G. K. Lee All rights reserved.


Biosphere: Get your ecosystem info for your area

- <u>https://www.epa.gov/eco-</u> <u>research/level-iii-and-iv-ecoregions-</u> <u>continental-united-states</u>
- Also check your state Dept. of Natural Resources State, County, & Local Government:
- Key concerns are water quality and stormwater management


stormwater management.

Know Your Drinking Water Source and Quality: You should get an annual water quality report from your local water company that also states the water source(s) of your drinking water.


How Does Water Move in Your Yard?

Use your knowledge of the Water Cycle, and the geographic systems model to see all the ways water can get to, from, and be stored in your yard. Then you can see how and where you can slow it and let it soak into the soil.

Benefits of Planting Trees

Adds value to homeowner and neighborhood via • beautification and privacy.

2023. G. K. Lee

All rights reserved.

Catch, Slow, Soak, and Clean Water

Catch rainwater and use it in your yard. Get a barrel to catch water from the gutters. Make a swale or a rainwater garden to catch the rain and let is soak into the ground. These can be done at minimal cost and can help improve property value.

Rain Barrel

AG-IWM

© 2023, G. K. Lee

All rights reserved.

Swale

Note: Some soil organisms can neutralize pollutants and clean the stormwater.

Rainwater Garden

Composting for Soil Improvement

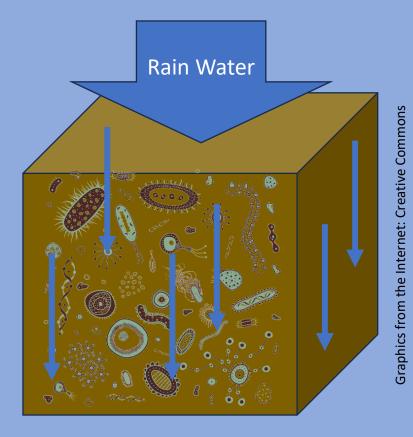
Composting improves soil texture, structure, and chemistry (and the health of soil organisms). It increases soil moisture retention capacity and can help cut the cost of water to maintain your yard and increase drought resistance. It also saves money by not buying lawn care chemicals that can pollute stormwater. For optimum results, do simple soil tests of your yard (see links below) and use the fallen tree leaves to make compost (see links below). All these activities make great hands-on science lessons for young and elderly folks.

AG-IWM

© 2023, G. K. Lee All rights reserved. FFI: Basic Soil Testing <u>W2.4</u> <u>W2.5</u>; Compost <u>W4.1</u> <u>W4.2</u> <u>W4.3</u>; <u>Making Compost</u>; <u>Intro. To Soil Management Methods</u>

Replace Impermeable Surfaces

Use open pavers instead of solid paved driveways, patios, and walkways to let rainwater soak into the soil. This reduces polluting stormwater runoff getting to the streets, storm drains, and streams. Some open pavers let grass grow, making the surface cooler, and reducing home air conditioning costs.


AG-IWM 2023, G. K. Lee

All rights reserved.

Note: Some soil organisms can neutralize pollutants and clean the stormwater.

Natural Stormwater Cleaning & Increased Drought Resistance

Rainwater soaking into healthy soil contacts a diverse community of soil organisms. Some can neutralize pollutants to naturally clean the water.

AG-IWM © 2023, G. K. Lee All rights reserved. **Note**: All this cleaning is done without adding chemicals, is free of charge to the homeowner making the yard more drought-resistant and better able to support plant growth.

Keep Pollutants Out of Your Yard

The law may not require you to pick up your pet poo in your yard, but keeping a clean yard keeps pollutants out of the stormwater flowing off your yard.

AG-IWM © 2023, G. K. Lee All rights reserved.

Question: Do you know how much poop your pet produces in a year?

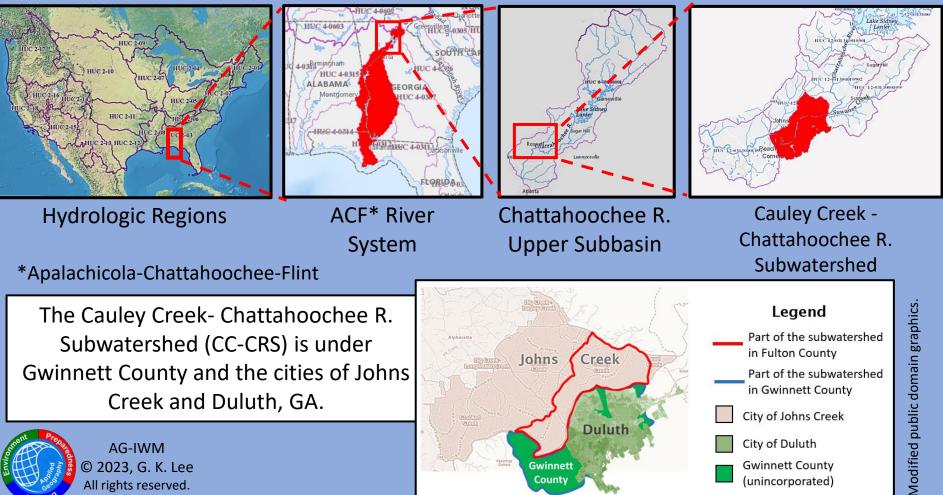
Stop Using These in Your Yard

Do not use chemicals like herbicides (weed killers), pesticides (bug killers), fertilizers, or spilling hazardous materials in your yard. Then they cannot get into stormwater running off your yard into the streets, storm drains, and streams.

AG-IWM © 2023, G. K. Lee All rights reserved. FFI: Compost <u>W4.1</u> <u>W4.2</u> <u>W4.3</u>; <u>Making Compost</u>; (Intro. To AppGeog Soil Management Methods)

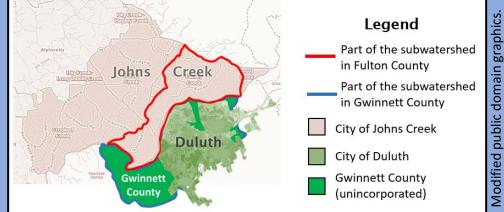
Replace Grass with Low-Maintenance Ground Covers

Replace your grass lawn with low-maintenance ground covers to get rid of gaspowered yard care equipment and control weeds without chemicals. There are ground covers of sunlit and shaded areas of your yard. Some are sturdy enough to withstand being repeatedly driven on and some are drought tolerant to cut down on your water use.



AG-IWM © 2023, G. K. Lee All rights reserved.

FFI: Low-maintenance ground covers <u>#1</u> <u>#2</u> <u>#3</u> <u>#4</u>


Location

Know your "big picture" water connection. For example, let's look at Duluth, GA.

Scale

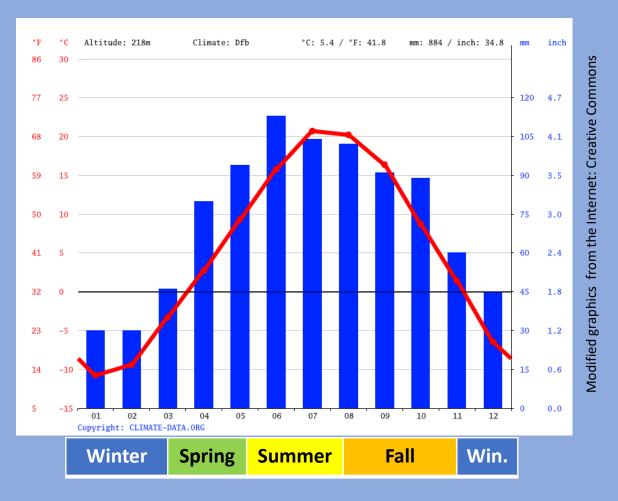
Scale is about the size and level of detail. For example, residential lawns in Duluth are about 3% of the CC-CR subwatershed area, with impermeable surfaces that

are about 1%. Though these amounts seem small, the type of pollution from residential areas can have a significant effect on the local waterways.

Pl	ace	Area	Typical home	Sq	m
CC-CRS		250.5 km ²	Roof	119 m²	182 m²
Duluth		25.47 km ²	Driveway	63 m²	102 111-
12 704	Lawn	7.97 km²	Yard		623 m²
12,794 homes	Roof	2.33km²	Residential lawns are 3% of the CC-CRS area, and		
nomes	Driveway	2.35KIII	impermeable su	irfaces are 19	%.

AG-IWM 2023, G. K. Lee

Time


Rainfall varies seasonally. For Duluth, stormwater events can often occur from Spring through Fall.

Look for climate and climate change data for your place.

- <u>https://www.uscli</u> matedata.com/
- <u>https://www.clim</u> <u>ate.gov/maps-</u> <u>data#dataset-</u> gallery-block

AG-IWM © 2023, G. K. Lee All rights reserved.

Map Your Yard

General Layout

The general layout of your yard shows the dimensions of the yard, the location of your home, all paved surfaces, the property boundaries, the street, trees, hedges, garden beds, and any natural waterways.

Map Your Yard (cont'd)

Slope Angle

The slope should be away from your house and not onto your neighbor's property. The rainwater should drain into a waterway or the street. Simple math and hand tools let you measure and map the slope of your yard. Then you can plan to slow the flow and make swales to let the water soak into the ground. If the slope is more than 10%, slow it down so it can soak into the ground.

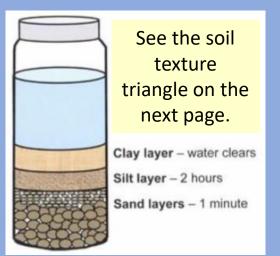


AG-IWM © 2023, G. K. Lee All rights reserved. FFI: <u>Leveling Survey</u> <u>Natural Terrain Study Guide</u>, p. 15

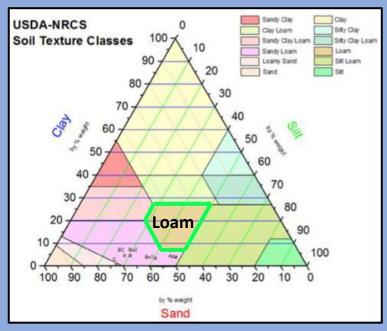
Map Your Yard (cont'd)

Slope Aspect

As you look down the slope, use a magnetic compass to know the direction the slope faces. Then note the direction storms will approach your house to help you know where to plant trees to block the wind.


Test Your Soil

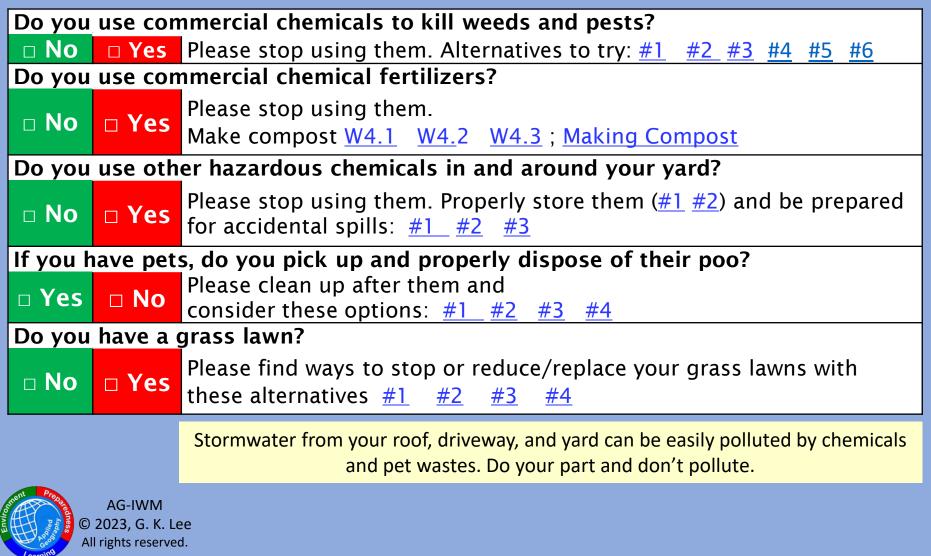
Start testing the soil where your slope survey indicates 1) a natural water flow path or a planned flow path, and 2) where you can make a swale. The goal is to improve the soil water infiltration rate and the soil's moisture retention capacity.


В	Push Rod	K	Phone
С	Shovel	L	Straight sided bottle
D	Tape measure	Μ	Tarp
Е	Trowel	Ν	4-L bottle of water
F	Bucket	0	White vinegar
G	Magnifying Glass	Ρ	Baking soda
Н	Stopwatch	Q	Measuring cup
1	Two empty water bottles		

AG-IWM © 2023, G. K. Lee All rights reserved. FFI: <u>Soil Survey Methods</u>; <u>Natural Terrain Study Guide</u>, p.28-35; Basic Soil Testing <u>W2.4</u> <u>W2.5</u>

Improve Your Soil

Compost is the optimum and natural way to get your soil to be a loam. This will increase the soil's ability to resist erosion, hold more moisture, support healthy soil organisms and plant growth, and improve drought resilience.


AG-IWM © 2023, G. K. Lee

All rights reserved.

FFI: Basic Soil Testing <u>W2.4</u> <u>W2.5</u>; Compost <u>W4.1</u> <u>W4.2</u> <u>W4.3</u>; <u>Making Compost</u>; <u>Intro. To Soil Management Methods</u>

Assess Your Yard for Pollutants

Take this short assessment and be green and clean!

Dogs & Owners Do; Cats & Owners Don't

Pet fecal (poop) wastes are a source of bacteria and viruses that contaminate stormwater. There are some dog poo calculators available (#1 #2 #3). Some states and cities have laws requiring dog owners to be responsible for cleaning up pet waste. Though cat feces (poop) are also sources of diseases and pollute stormwater, cats and their owners do $\searrow P$ not have similar laws (#1 #2 #3).

<section-header><section-header><text><text><text>

Images from the Internet; free educational use clause.

Assess Your Yard for Impermeable Surfaces

Reduce impermeable surfaces at your home to do your part to reduce stormwater runoff from your property.

Do you know the total roof area of all the buildings on your property?				
□ Yes	□ No	If not, please measure and calculate it.*		
Do your collect rainwater from your roof and gutters?				
□ Yes	□ No	If not, please consider these alternatives: <u>#1</u> <u>#2</u> <u>#3</u> <u>#4</u>		
Do you know the total are of your driveway?				
□ Yes	□ No	If not, please measure it and calculate it.*		
Is your driveway permeable to water?				
🗆 Yes	□ No	If not, please consider these alternatives: <u>#1</u> <u>#2</u> <u>#3</u> <u>#4</u>		
Do you know the total area of other paved surfaces on your property?				
□ Yes	□ No	Please measure and calculate them.*		
Are these other paved surfaces permeable to water?				
□ Yes	□ No	If not, please consider these alternatives: <u>#1</u> <u>#2</u> <u>#3</u>		
Do you control stormwater runoff from your yard?				
	□ No	Please review the previous slides and do your part to reduce nonpoint		
□ Yes		pollution of stormwater from your yard. FFI: $\frac{\#1}{2}$ $\frac{\#2}{2}$		
Lent Prepa	AG-IWM	*If you have a stormwater utility in your area, these areas are		
	2023, G. K. Le			

All rights reserve

- If you plant tree\$, you get the\$e return\$:
- \$hade to \$ave on \$ummer home cooling co\$t\$.
- Tree\$ increa\$e property and neighborhood real e\$tate value\$.
- Tree\$ help improve \$oil moi\$ture retention. This reduce\$ lawn watering co\$t\$.
- If you plant fruit/nut tree\$, you get some food \$ecurity and \$ave on grocerie\$.
- Leave\$ and fallen fruit\$ give\$ you material\$ for making compo\$t, \$aving your from buying fertilizer\$.

- If you \$low \$tormwater flow in your yard, you get the\$e return\$:
- It gives water more time to \$oak into the ground.
- It reduce\$ your lawn watering co\$t\$.
- It make\$ your yard more drought re\$i\$tant and help\$ retain your property value.

- If you make and u\$e compo\$t, you get the\$e return\$:
- You \$ave money by not busing herbicide\$, pesticide\$, and fertilizer\$ and related tools.
- It help\$ reduce co\$t\$ from adver\$e effect\$ of lawn chemical\$ to you and your family.
- It increa\$e\$ \$oil moi\$ture retention and make\$ your cost\$ to water your lawn.

- If you decrea\$e impervious\$ \$urface\$, you get the\$e return\$:
- Your home \$tay\$ cooler in \$ummer\$, reducing air conditioning co\$t\$.
- It increa\$e\$ \$oil moi\$ture retention and make\$ your cost\$ to water your lawn.
- Eliminate\$ un\$lightly cracked driveway\$, patio\$, and walk\$ that decrea\$e\$ property value.
- Make\$ your home more environmentally \$ound and can increa\$e re\$ale value.

If you u\$e low-maintenance ground cover\$ to replace your gra\$\$ lawn, you get the\$e return\$:

- \$ave on your water bill for lawn care.
- \$ave money by not buying ga\$-powered lawn care equipment.
- \$ave money by not buying herbicides\$.
- \$ome ground covers are \$turdy enough to replace imperviou\$ sidewalks and driveway\$.


If you clean up your pet's wa\$te, you get the\$e return\$:

- Your yard and garden bed\$ won't \$mell.
- Your vegetable garden can be \$afer and more \$anitary (think cat\$ burying poo there).
- In the long-term, reduced \$tormwater pollution reduces the amount of cleanup needed for your drinking water \$upply.

Expand Your Horizons

After doing your home, get your neighbors to do their part. Then look at your watershed. Everyone needs and uses water, so everyone must do their part to ensure we can all have clean safe water to survive and thrive.

AG-IWM © 2023, G. K. Lee All rights reserved.

Taking the effort from home to the neighborhood and on to the watershed.

Neighborhood Challenges

If your neighborhood floods: Get the city to help you estimate stormwater runoff for the neighborhood. Then estimate how much could be slowed from getting to the storm drains by homeowner actions. If the neighborhood efforts reduce flooding, it is a direct benefit to the neighborhood.

Get the city to agree on a stormwater reduction target in exchange for a) a property tax rebate, b) stormwater utility credit, or some other incentive to motivate homeowner participation.

Neighborhood Challenge #1

If your neighborhood floods: Get the city to help you estimate stormwater runoff for the neighborhood. Then estimate how much stormwater could be slowed from getting to the storm drains by homeowner actions. If the neighborhood efforts reduce flooding, it is a direct benefit to the neighborhood.

Get the city to agree on a stormwater reduction target in exchange for a) a property tax rebate, b) stormwater utility credit, or some other incentive to motivate homeowner participation.

Neighborhood Challenge #2

Yard/Driveway make-over: Using the same stormwater data from challenge #1, get the city and water utility to estimate the value of replace lawns, walks, and driveways with low-maintenance ground cover or open pavers to reduce water use for lawns, reduce impervious surfaces, and reduce urban heat island effects and air pollution by eliminating gas-powered yard-care equipment.

Get the city to agree on a) a property tax rebate, b) stormwater utility credit, or some other incentive to motivate homeowner participation.

Neighborhood Challenge #3

Improve your neighborhood with tree planting: Get the city or power company to help you estimate summer electricity use in your neighborhood. Then estimate how much electrical could be reduced planting trees and the benefit to the city for reducing air pollution and stormwater runoff.

Get the city and utility to collaborate and provide matching funds to get trees for homeowners to plant. Improved property tax values/revenues help the city to recoup initial costs and sustain funding the tree planting program. Or negotiate some other incentive to motivate homeowner participation.

Is anyone Upstream from You?

Your efforts to not pollute can be undone by upstream pollution sources. All downstream users are affected by those upstream from them. This is why water resource management requires collaboration and cooperation so everyone can get clean safe drinking water.

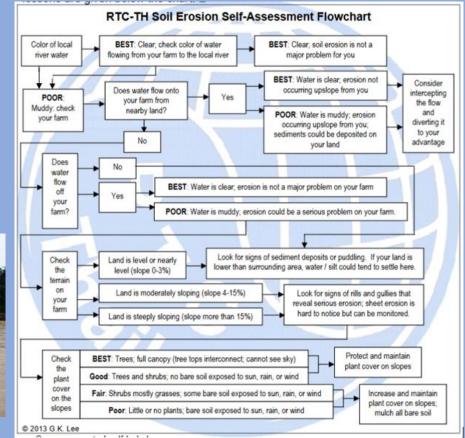
AG-IWM 2023, G. K. Lee All rights reserved.

Protecting the Watershed

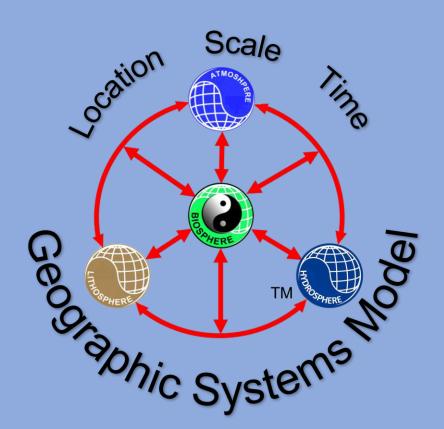
AG-IWM © 2023, G. K. Lee All rights reserved.

Integrated Watershed Management requires constant effort because the environment, society, and the world are forever changing. Local governments may not have enough staff or money to do the work by themselves. Residents have a vested interest in ensuring getting clean drinking water.

Any Erosion in the Watershed?


Soil is the soul of the watershed. Soil erosion robs the watershed of its soul, so learn to check for erosion.

Stormwater erodes soil and causes rivers and streams to appear muddy. This degrades both water quality and the form and functions of streams and rivers.

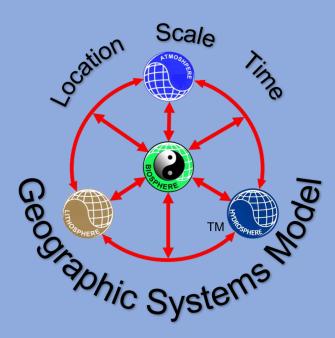


AG-IWM © 2023, G. K. Lee All rights reserved.

Source: 2013 RTC-TH Apr Update 2

Everything is Connected

AG-IWM © 2023, G. K. Lee All rights reserved.


This brings us back to where we started this presentation. But there is still more to be done, and it starts with you. You may feel that your effort at home is just one tiny drop in the ocean. How can it make a difference? Well, imagine you are very thirsty and don't have any water at all. Then ask yourself if you'd like a drop of water.

Remember Your Connections

A home in Duluth, GA in the CC-CR subwatershed is connected to a river basin and system. Polluted stormwater could eventually flow through Georgia, Alabama, and Florida and get into the Gulf of Mexico.

For More Information

Geography may not change the world, but it will change the way you see it.

Greg Lee Applied Geography Founder

appgeog4sl@gmail.com

AG-IWM © 2023, G. K. Lee All rights reserved. Applied Geography for Sustainable Living

Geography may not change the world, but it will change the way you see it. –G. K. Lee

appgeog4sl@gmail.com

AG-IWM © 2023, G. K. Lee All rights reserved. Applied Geography for Sustainable Living