Rural Training Center - Thailand (RTC-TH)

Community-based Environmental Education for the Self-sufficiency and Sustainability of Small Rural Family Farms

© 2010, rev 2012 RTC-TH. All rights reserved.

Advanced MEWS

Weather Cbserving Lesson A4: Measuring Rainfall

A Mobile

 Emergency Weather Station (MEWS) Training Series presentation

Rural Training Center-Thailand Emergency Communications Program
Ready to serve and sustain our community
For other lessons in the series e-mail hsØzhm@gmail.com www.neighborhoodlink.com/RTC-TH_Tech/pages

A part of the RTC-TH EmComm Program

The Rural Training CenterThailand Emergency Communications program is a volunteer effort to provide emergency
 amateur radio communications for local community self-sufficiency and sustainability in times of need.

The Rural Training Center-Thailand (RTC-TH)

is an all volunteer organization providing community-based environmental education for self-sufficiency and sustainability of small rural family farms
www.neighborhoodlink.com/org/rtcth
E-mail: rtc2k5@gmail.com

MEWS adapts weather lessons from two existing RTC-TH programs

Unless othemise indicated, photos in this presentation are the exclusive property of the RTC-TH. Use of RTC-TH copyrighted materials are available for private / non-commercial educational use without written permission if no changes are made, no fee is charged, and proper attribution is made to the RTC-TH.
Commercial use of the materials is prohibited vithout written permission.

E-mail: rtc2k5@gmail.com

 www.neighborhoodlink.com/RTCTH_Tech/pages

The Rural Training Center-Thailand was created to honor the life and memory of Mr. Tang Suttisan, a father, farmer and former custodian of Ban Na Fa
Elementary School who appreciated and valued education.

Floods can occur due to heavy rains, landslides blocking streams, or failed dams.

When flooding force roads and bridges to be closed, relief cannot get to the survivors.

Heavy rains can cause landslides that block road delaying relief help coming to survivors.

Local EmComm HAMs can provide important local weather conditions for flight crews.

Measuring rainfall is one important way that people can know when a flood may happen.

Get clever and make use of materials on hand. Or plan ahead to have rain catching materials as part of your emergency preparedness kit.

Small photos from the Internet;
educational fair use clause
The water may need to be treated before drinking; See lesson EP-3.

The EP Lesson Series

www.neighborhoodlink.com/RTC-TH_Tech/pages

Precipitation is any form of solid or liquid water falling from a cloud.

For Nan Province, rain is the most common form of precipitation.

Most other forms of precipitation are

less likely to occur in Thailand

- Snow
- Hail
- Sleet
- Freezing Rain

Hail might occur during severe thunderstorms and can be very damaging to people and property. Past records show hail occurred in northern Thailand.

When does it rain in Nan?

From North Thailand Climate Data During 54 years (1951-2004)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
North	-	-	-	-		2	9	17	23	1	1	-	72
Seasons	Winter (NEM)		Summer			Rainy (SWMonsoon)				Winter (NE Monsoon)			
Ave Temp	$23.1{ }^{\circ} \mathrm{C}$		$28.0^{\circ} \mathrm{C}$			$27.3^{\circ} \mathrm{C}$				$23.1{ }^{\circ} \mathrm{C}$			
Temp Range	$17.1-30.8^{\circ} \mathrm{C}$		$21.4-35.8^{\circ} \mathrm{C}$			$23.7-32.2^{\circ} \mathrm{C}$				$17.1-30.8^{\circ} \mathrm{C}$			
Ext Temp	$0.8^{\circ} \mathrm{C}$		$44.5{ }^{\circ} \mathrm{C}$							$0.8{ }^{\circ} \mathrm{C}$			
Rainfall (mm)	105.5		182.5			952.1				105.5			1240.10
Thawangpha Rainfall (mm)	11.0	12.6		108.0	206.2	202.4	244.1	302.3	175.6	80.4	22.7	5.9	1400.04
			T-storms			SW Monsoons							

© 2010, rev 2012,
Most rain falls in MayOct during the monsoon season; though thunderstorms can occur in summer.

Mean Monthly Rainfall in Thailand (mm)
30-year period : 1971-2000

Record the precipitation amount using mm units in Section 4.4

Guide notes are on the

 front of the formRainfall is measured 1 time a day (at 0900 local time for MEWS).

Rain can limit visual range and so affects flight safety. Refer to MEWS B7 for more details.
RTC-TH M.E.W.S. Weather Observation Log

Weather Observations Time

and sustain our community.

Lat	${ }^{\prime \prime} \mathrm{N}$	V Long	\bigcirc	"E			
Lat	N	Long		E	Elev		m AMSL
Date		Weather Observations Time					
		Sunrise		Mid-Afternoon		Sunset	
Local time 24-hr format	Hour \rightarrow						
Observer (initial; see back)							
Thermometer in shade; 1.5 m above ground			${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$	
			${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$		
Subtract 2.2 from 2.1;			${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	
Use 2.1, 2.3; R H Table			\%RH		\%RH	\%RH	
Use 2.1, 2.3; Dew Pt Table			${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	
Use 2.1, 2.4; HSI Table		Heat Stress	${ }^{\circ} \mathrm{C}$	Heat Stress	${ }^{\circ} \mathrm{C}$	Heat Stress $\quad{ }^{\circ} \mathrm{C}$	
Danger Level (if any from Heat Stress Index table)		\square Cautn \quad Danger\square Ex Cautn \square Ex Dangr		$\begin{array}{ll} \square \text { Cautn } & \square \text { Danger } \\ \square \text { Ex Cautn } \\ \square E x \\ \text { Dangr } \end{array}$		\square Cautn\square Ex Cautn\square Ex Dangr	
Use 2.1, 3.1; Wind Chl Tbl		Wind Chill.	${ }^{\circ} \mathrm{C}$	Wind Chill.	${ }^{\circ} \mathrm{C}$	Wind Chill. ${ }^{\circ} \mathrm{C}$	
Danger Level (if any from Wind Chill chart)		Trvi Dngr TShltr Dgr Frostbite	$\begin{gathered} \text {-Frstbte10 } \\ \text {-Frstite30 } \\ \text { aFrstbte5 } \end{gathered}$	$\begin{aligned} & \text { Trvl Dngr } \\ & \text { TShltr Dgr } \\ & \text { Frostbite } \end{aligned}$	-Frstbte10 -Frstite30 -Frstbte5	\square Trvl Dngr TShltr Dgr aFrostbite	-Frstbte10 -Frstite30 -Frstbte5

	Report wind speed in knots to air crews; km / h to all others.						
	Average	Get 3 readings \& average	km/h knts	kmih	knts	km/h	knts
	Gusts	Record highest gust	km/h knt	kmh kn		km/h	
	Wind Speed Guidelines for Helicopter Flight Operations						
	10 knots / $18.5 \mathrm{~km} / \mathrm{h}$ ideal; OK to fly		to fly \quad Ab	Above 45 knots / $83 \mathrm{~km} / \mathrm{h}$; No flights. Max tailwind 5 knots/ $6 \mathrm{~km} / \mathrm{hr}$; No take off			
3	Steady Wind Direction	Circle direction steady wind comes FROM	N $N E$ S $S W$ E $S E$ W $N W$	$\begin{array}{ll} \hline N & N E \\ E & S E \end{array}$	$\begin{array}{ll} \hline \text { S } & \text { SW } \\ \text { W } & \text { NW } \end{array}$	$\begin{array}{ll} \hline N & N E \\ E & S E \end{array}$	$\begin{array}{lc} \hline \text { S } & \text { SW } \\ W & N W \end{array}$
3.2	Variable Wind Direction	Circle 1 or more directions wind comes FROM	N NE S SW E SE W NW	$\begin{array}{ll} \hline \mathrm{N} & \mathrm{NE} \\ \mathrm{E} & \mathrm{SE} \end{array}$	S SW W NW	N NE E SE	S SW W NW
4.1	Cloud Cover	Use Defnitions in Cloud Cover Table	\square Clear \square Cloudy \square Scattered \square Overcast \square Broken	\square Clear \square Cloudy\square Scattered \square Overcast\square Broken		\square Clear \square Cloudy\square Scattered \square Overcast\square Broken	
4.2	Use local mountain of known elevation (above mean sea level) and report clouds above, at, or below mountain top.						
	Cloud Base Ht (Loc Rel)	Relative to local Mtnm AMSLDewCal (2.1-2.5) $9.8 \times 1000 \mathrm{~m}$	\square Clouds above mtn \square Clouds at mtn top \square Clouds below mtn	Clouds above mtn \square Clouds at mtn top \square Clouds below mtn		- Clouds above mtn \square Clouds at mtn top \square Clouds below mtn	
			mAGL		m AGL		m AG
	Min. flight atitudes: Day $=160 \mathrm{~m} \mathrm{AGL} ;$ Night $-500 \mathrm{~m} \mathrm{AGL;}$ Low cloud ceiling $=$ No flights.						
4.3	Cloud Type	Vertically Developed	\square Cirrus	\square Cirrus	$\square \mathrm{CuNim}$ \square Cumul	\square Cirrus	-CuNim \square Cumul
				Altostrat Altocum		\square Altostrat - Altocum	
		Low Developed	\square Stratus \square Nimatrat a Cumul	\square Stratus		\square Stratus Nimstrat	
4.4		easure at 0900 hrs each morning. Report amount for last 24 hrs.					

Additional brief

 guide notes are onthe back of the form

© 2010, rev 2012, G. K. Lee HSOZHM All Rights Reserved.

Full instructions and all needed reference tables are in the MEWS Weather Observer Handbook (Section 4.4, 26-27).

All weather observers write their initials and clearly print their name using block letters		

M.E.W.S. Summary Weather Observation Log Instructions

Header

Location: Local Place Name
Latitude, Longitude from GPS, survey records or
map measurement.
Elevation: Survey records or map measurement

(GPS elevations are not reliable).
Date/Hour: Use local Thai standard time in Observer: initials in box. Full name (print clearly) on top/back of form 24-hour format.
Temperature / Relative Humidity
2.1 Air (Dry Bulb) Temp: Read thermometer kept
in the shade, 1.5 m above the ground.
2.2 Wet Bulb Temp from hyrgrometer kept in the
shade, 1.5 m above the ground.
2.3 Difference between Dry and Wet Bulb
temperatures.
2.4 Relative Humidity: Use Dry Bulb Temp (2.1), Difference (2.3) and Relative Humidity table to find \% Relative Humidity. 2.5 Dew Point Temperature: Use Dry Bulb Temp (2.1), Difference (2.3) and Dew Point Temp table to find Dew Point Temp. 2.6 Heat Stress Temperature: Use Dry Bulb Temp (2.1), \% Relative Humidity (2.4) and Heat Stress Index Table to find Heat

Stress Temperature and relevant advisory warning.
2.7 Wind Chill: Use the Dry Bulb Temp (2.1) and Wind Speed (3.1) and Wind Chill Table to find the Wind Chill Temperature and relevant advisory warning

Wind Speed / Direction

3.1 Average and Gust Wind speeds: Use Beaufort Table or direct measurements 3 times and average results. Gusts are short, strong blasts of wind. Report wind speeds in knots to air crews. Advise air crews when wind speeds are close to affecting

helicopter flight operations.
3.2 Steady or Variably blowing winds. If steady, circle letter for direction. If variable, circle all appropriate letters for

Sky Conditions
4.1 Cloud cover: Look at the sky and follow the definitions for each cloud cover classification.
4.2 Cloud Base Height: If relative to a local
mountain, give its name and elevation above
mean sea level. Note Local Relief in meters. If using the Dew Point method, subtract Dew point temp (2.5) from Dry temp (2.1) and divide result by 9.8 ; multiply quotient by 1000 m . Advise air crews when cloud base height (ceiling) are close to affecting helicopter flight operations.
4.3 Cloud Type: Check the appropriate box

4.4 Rainfall: Measure water in rain gauge each day at 0900 hrs . Rain gauge should be in open area, away from tall objects,

 with top of gauge 50 cm above ground to avoid splash water from entering gauge.than the known distances to these landmarks. Advise air crews when visual range is close to affecting helicopter
flight operations. Check appropriate boxes for reasons of reduced visibility.
4.6 Severe Weather: Primary concerns and thunderstorms and lightning. Check the appropriate boxes. If lighting, watch for flash, count seconds until you hear the thunder, divide by 3 = approximate distance in km . Circle direction to storm.

A brief note on the form reminds you to check the rain gauge once each day.

Measure at 0900 (local time) each morning. Report rainfall for the past 24 hrs.

Brief notes on the back of the form give more details
RTC-TH M.E.W.S. Weather Observation Log

	Location							
	Lat	"N	Long		' "E	Elev	m AMSL	
	Lat	N	Long		E			
	Date		Weather Observations Time					
-			Sunrise		Mid-Afternoon		Sunset	
	Local time 24-hr format	Hour \rightarrow						
	Observer (initial; see back)							
bulb)	Thermometer in shade; 1.5 m above ground			${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$
ulb				${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$
nce	Subtract 2.2 from 2.1;			${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$
nidity	Use 2.1, 2.3; R H Table			\%RH		\%RH		\%RH
oint	Use 2.1, 2.3; Dew Pt Table			${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$
ress	Use 2.1, 2.4; HSI Table		HeatStress ${ }^{\circ} \mathrm{C}$$\square$ Cautn \square Danger\square Ex Cautn \square Ex Dangr		Heat Stress ${ }^{\circ} \mathrm{C}$		Heat Stress $\quad{ }^{\circ} \mathrm{C}$	
	Danger Level (if any from Heat Stress Index table)				-Cautn - Ex Cautn	\square Danger \square Ex Dangr	$\begin{aligned} & \square \text { Cautn } \\ & \square \text { Ex Cautn } \end{aligned}$	$\begin{aligned} & \text { Danger } \\ & \text { Ex Dangr } \end{aligned}$
	Use 2.1, 3.1; Wind Chl Tbl		Wind Chill.	${ }^{\circ} \mathrm{C}$	Wind Chill.	${ }^{\circ} \mathrm{C}$	Wind Chill.	${ }^{\circ} \mathrm{C}$
Chill	Danger Level (if any from Wind Chill chart)		Tryl Dngr TShitr Dgr aFrostbite	-Fristbte10 -Frstite30 aFrstbte5	\square Trvl Dngr \square TShltr Dgr \square Frostbite	-Frstbte10 -Frstite30 FFrstbte5	Trul Dngr TShltr Dgr FFrostbite	$\begin{gathered} \text { FFrstbte10 } \\ \text { Frstite30 } \\ \text { Firstbte5 } \end{gathered}$

-	4.4	Rainfall	Measure at 0900 hrs each morning. Report amount for last 24 hrs .							mm
子	4.5	Visual Range (Visibility)	wame or 3.2 km mark		$\begin{aligned} & \hline \text { amore } \\ & \text { a Rain } \\ & \text { aHaze } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { पाess tnan } \\ & \text { Fog } \\ & \text { Smoke } \end{aligned}$	$\begin{aligned} & \text { Imore } \\ & \text { Rain } \\ & \text { Haze } \end{aligned}$	$\begin{aligned} & \hline \text { ITess tnan } \\ & \square \text { Fog } \\ & \square \text { Smoke } \end{aligned}$	$\begin{aligned} & \text { Rain } \\ & \text { Raze } \end{aligned}$	$\begin{aligned} & \hline \square \text { Fog than } \\ & \square \text { Smoke } \end{aligned}$
			Name of 3.2 km mark		$\begin{aligned} & \text { a more } \\ & \text { a Rain } \\ & \text { - Haze } \end{aligned}$	- less than \square Fog -Smoke	- more \square Rain - Haze	- less than \square Fog -Smoke	$\begin{aligned} & \hline \text { a more } \\ & \square \text { Rain } \\ & \square \text { Haze } \end{aligned}$	\square less than \square Fog \square Smoke
		Helic coter minimum visibility: Day $=3.2 \mathrm{~km} / 2$ miles; Night $=5 \mathrm{~km} / 3$ miles; Low visibility = Noflights								
	4.6	Severe Weather	Thunderstorms		\square Yes	$\square \mathrm{N}_{0}$	$\square \mathrm{Yes}$	$\square \mathrm{N}_{0}$	$\square \mathrm{Yes}$	$\square \mathrm{No}$
				Flash, count secs	NNEES	SSWWNW	NNEES	ESSWWNW	NNE E	ESSW W NW
			Lighning	to boom/3	$\square \mathrm{Yes}$	km	$\square \mathrm{Yes}$	km	- Yes	km

To measure rainfall you need

Calculator

Ruler or tape
Pencil measure

MEWS Log
Form

A rain gauge is used to measure the rainfall in an area.

You can make a simple rain gauge...

...using an empty jar,
or some PVC pipe.

Rain Gauge Placement

Follow same guidelines as for Temperature in

Avoid to tall
obstructions

Avoid large paved areas

Best over short grass or bare soil (~ 9 m radius)

Put the rain gauge in an open level area far from buildings and trees.

Look at the tallest building or tree, multiply the height by 4 .

The rain gauge should be this distance from the building or tree.

It can be put on the ground or on

 a pole.

Some storms have strong winds. Make sure your rain gauge won't be blown over.

If put on the ground, the top of the rain gauge should be 50 cm above the ground.

This helps make sure water splashing from the ground doesn't get into your rain gauge.

If put on a pole, the rain gauge should be above the top of the pole.

This keeps water from the ground or the top of the pole from splashing into the rain gauge.

When the rain stops, remove the collector bottle from the rain gauge. Measuring the rainfall amount depends on the equipment and time you have.

Quick and Simple

- ruler or tape measure

Slow and Accurate

- graduated cylinder
- pocket calculator

RTC-TH Recommendation

Slow and Accurate

Quick and Simple ruler or tape measure

- graduated cylinder
- pocket calculator

Rough estimate OK for disaster response

More accuracy needed for resource management

You can

 simply measure the depth of the water in the collecting bottle to get a rough rain fall amount
To measure the rain in the gauge more accurately, you need a graduated cylinder.

When the rain stops, remove the collector bottle from the rain gauge.

Use a graduated cylinder to measure the amount of rain you collected.

Watch carefully as you measure.

Fill the water up to the measuring mark. Not more, and not less.

It sounds easy, but the

water does NQT stay flat.

Record the total number of milliliters of rain.

Now do some arithmetic.

 You measured the volume of water and need to report rainfall in linear units.
1 milliliter of water $=0.001 \mathrm{~mm}$ of rainfall

Multiply to total number of milliliters by 0.001

 Record the precipitation amount using mm in Section 4.4

Warning Signs

100 mm of rainfall in 24-hours = increased chances of landslides especially on slopes over 15\%

250+ mm of rainfall in 24-hours = increased chances of floods in hillside and low lying areas near rivers and streams. Flashfloods especially in narrow canyons/valleys

Areas below dams may get flooded if water must be released from the dams to keep the dams safe.

Alternative Methods to Report Rainfall

Rate of Fall

Intensity	Criteria
Light	$2.54 \mathrm{~mm} / \mathrm{hr}$ or $0.254 \mathrm{~mm} / 6$ minutes $0.1 \mathrm{inch} / \mathrm{hr}$ or $0.01 \mathrm{inch} / 6$ minutes
Moderate	$2.79 \mathrm{~mm}-7.62 \mathrm{~mm} / \mathrm{hr}$ or $0.254 \mathrm{~mm}-0.762 \mathrm{~mm} \mathrm{/} 6$ minutes 0.11 inch $-0.30 \mathrm{inch} / \mathrm{hr}$ or 0.01 inch -0.03 inch / 6 minutes
Heavy	More than $7.62 \mathrm{~mm} / \mathrm{hr}$ or more than $0.762 \mathrm{~mm} / 6$ minutes More than 0.30 inch / hr or more than 0.03 inch / 6 minutes

This may be difficult to do if you are alone or are very busy. We suggest keeping it simple and use the linear measuring method.

Alternative Methods to Report Rainfall

Estimating the Intensity of Rain

Intensity	Criteria
Light	Scattered drops; do not wet surface regardless of duration of rain; individual rain drops are easily seen.
Moderate	Individual drops not readily seen; spray easily seen just above surface of pavement or other hard surface.
Heavy	Rain falling in sheets; individual drops not easily seen; spray to the height of several cm above the pavement or other hard surface.

This is easier to do especially if you are working alone.

Alternative Methods to Report Rainfall

Estimating the Intensity of Drizzle by Visibility

Intensity	Criteria
Light	Visibility $>0.8 \mathrm{~km}$ or >0.5 mile
Moderate	Visibility $>0.4 \mathrm{~km}$ but $</=0.8 \mathrm{~km}$; or >0.25 mi but $</=0.5 \mathrm{mi}$
Heavy	Visibility $<0.4 \mathrm{~km}$ or $<.025$ mile

You need to know the distance to local landmarks for reference.

Unfortunately, these visual ranges are already well below safe flight requirements.

Important Note

Normally MEWS observations are made 3 times a day. However, if flight operations are in progress, try to provide flight crews with weather updated prior to landings and take-offs for flight safety.

Report a Flight Advisory any time cloud base height is near to, $\underline{\text { att, }}$ or less than the warning limits listed on the Log Form.

For flight operations, make and report observations to flight crews before landings and take-offs

Cross out the headings for Sunrise, MidAfternoon, Sunset

Record the specific local time of your observations

| | | |
| :--- | :--- | :--- | :--- |
| Hour \rightarrow | | |

Record the Rainfall in Section 4.4

Weather observations to support flight operations are critical for safety of flight crew and LZ area.
If a HAM, print your call sign (or name if no call sign)

If more frequent observations are done to support flight operations...

> ...cross out the headings "Sunrise", etc. and record the time of the observations in the space provided.

For flight operations, make and report observations to flight crews before landings and take-offs

Advanced Weather Reports for Flight Crews

- 2.1 Temperature
- 2.4 Relative Humidity
- 3.1 Wind Speed
- 3.2 Wind Direction
- 4.1 Cloud Cover
- 4.2 Cloud Base Height
- 4.3 Cloud Type
- 4.4 Rainfall
- 4.5 Visual Range
- 4.6 Severe Weather

Weather observations to support flight operations are critical for safety of flight crew and LZ area.

Now you know how to measure precipitation.

You have completed the Advanced MEWS Lesson A4: Measuring Rainfall

You are now ready for Advanced MEWS Lesson A5: Reporting Severe Weather

Questions or Comments

Refer to the MEWS Weather Observer Handbook for more details on any of the procedures in this lesson.

You may also contact us by e-mail: hsØzhm@gmail.com
We are always trying to improve our lessons. Your comments and suggestions are welcomed.

Free Self-Study Materials by Internet

- RTC-TH Weather Observer manual
- Illustrated PDF topical lessons

All of the lessons have been classroom and field proven.

> Send e-mail to
> hsØzhm@gmail.com to request free training materials for noncommercial use only.

Advanced MEWS PDF Lessons

A 1: Measuring Relative Humidity and Heat Stress
A 2: Measuring Wind Speed and Wind Chill
A 3: Using Dew Point Temperature to Calculate Cloud Base Height A 4: Measuring Rainfall A 5: Reporting Severe Weather A 6: Weather Forecasting

Be sure to check www.neighborhoodlink.com/RTC-TH Tech/pages for the latest updated editions of MEWS lessons

Advanced MEWS PDF Lessons

Six slide show lessons; Some show how to build your own weather equipment

The EP Lesson Series

www.neighborhoodlink.com/RTC-TH_Tech/pages

For More Information about M.E.W.S.

 MEWS Creator / Mentor

Community-based Environmental Education for

Continue this slide show and learn how to make your own rain gauge.

Make your own rain gauge

I made this rain gauge out of PVC because the parts were salvaged from "junk" on the farm.

Make your own rain gauge

Cement the pieces together to complete the rain gauge.

Locate and set up the rain gauge following the instruction in this lesson.

Community-based Environmental Education for

www.neighborhoodlink.com/org/rtcth

E-mail: rtc2k5@gmail.com

