M.E.W.S. WEATHER OBSERVER HANDBOOK Ready to sever and sustain our community G.K. Lee HSØZHM This edition printed from digital media. © 2011, G.K. Lee Published by Rural Training Center-Thailand (RTC-TH) Ban Na Fa, Jompra Subdistrict, Thawangpha City, Nan Province, Thailand Publication # RTC-TH-MEWS-WOH All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder. Printed in the Thailand # **Table of Contents** | Section | | | | | Page | | | | | |----------------|---|-----------------------------------|--------------|-----------|-------------|--|--|--|--| | | MEWS Lesso | on Directory | | | iv-v | | | | | | | Access to MEWS Lessons on the Web | | | | | | | | | | | Introduction OA & OB | | | | | | | | | | | | Form: MEWS Observation | n Log | | 3 | | | | | | 1.0 Hea | der / Location | | | | 4-5 | | | | | | 1.1 | Latitude / Lor | ngitude | - | | 5-6 | | | | | | 1.2 | Elevation | | 0 | C | 6-7 | | | | | | 1.3 | Date / Time (| hour) | | | 8 | | | | | | 1.4 | Observer | | | | 8 | | | | | | 2.0 Tem | perature | | Basic 1 | | 9 | | | | | | 2.1 | Air (Dry Bulb) | Temp | Dasic i | | 9 | | | | | | 2.2 | Wet Bulb Ter | np | | Adv 1 | 9-10 | | | | | | 2.3 | Difference | | | Auvi | 10 | | | | | | 2.4 | Relative Hum | nidity | | | 10-12 | | | | | | 2.4 | | Chart: Relative Humidity 7 | Γable | | 11 | | | | | | 2.5 | Dew Point Temp Adv 3 | | | | | | | | | | 2.0 | (| | 13 | | | | | | | | 2.6 | Heat Stress 7 | | Adv 1 | 14
16 | | | | | | | 2.0 | Chart: Heat Stress Index Chart | | | | | | | | | | 2.7 | Wind Chill Temp Adv 2 | | | | | | | | | | | Wind Chill Chart | | | | | | | | | | 3.0 Win | d Speed and D | | | | | | | | | | | | Average | Basic 2 | Adv 2 | 17 | | | | | | 3.1 | Wind speed | Gusts | | | | | | | | | 0 | Trinia opeca | Chart: Modified Beaut | | | 18 | | | | | | | | Chart: Dwyer Wind Gauge | e Conversion | on Chart | 19 | | | | | | 3.2 | Wind | Steady | Basic 3 | | 20-21 | | | | | | | direction | Variable | | | | | | | | | 4.0 | Sky Condition | on | Basic 4 | | | | | | | | 4.1 | Cloud Cover | | | | 22 | | | | | | | Ol. I D I | Chart: Cloud Cover Chart | Basic 5 | 4.1.0 | | | | | | | 4.2 | Cloud Base F | Adv 3 | 23 | | | | | | | | 4.2.1 | Estimated by Cloud Type or Relative to Local Mountain | | | | | | | | | | 4.2.2 | | ght Calculated by Dew Point Tempo | | Adv 3 | 23-24
24 | | | | | | 4.3 | Cloud Type Basic 6 | | | | | | | | | | 1 1 | Chart: Cloud Identification Chart | | | | | | | | | | 4.4 | Rainfall Adv 4 | | | | | | | | | | 4.5 | Visual Range | | Basic 7 | Adv E | 28-29 | | | | | | 4.6 | Severe Weat | | Basic 8 | Adv 5 | 29-30 | | | | | | Ann 1 | Woother Ohe | Chart: "Flash to Boo | ill Kelelel | ice Chart | 30 | | | | | | App 1 | | ervation Equipment | Booic 6 | Adv 6 | 31 | | | | | | App 2 | | | Basic 6 | Adv 6 | 32-35
36 | | | | | | | Weather Forecasting Basic 6 Adv 6 Conversion References | | | | | | | | | | App 3
App 4 | | pporting Flight Operations | | | 37 | | | | | | Mobile Emergency Weather Station (MEWS) Lesson Directory | |--| |--| The MEWS directory lists the MEWS lessons in the suggested sequence. Instructions to access the lessons are found after the Table of Contents. Some of the files are large. So please be patient as the download time may vary depending on the speed of your connection. | download time may vary depending on the speed of your connection. | | | | | | | | | | | | |---|------------------------------------|---|--|--|--|--|--|--|--|--|--| | | MEWS Orientation Presentations | | | | | | | | | | | | OA | MEWS Introdu | ction Overview of MEWS | | | | | | | | | | | ОВ | Observer orientation | Orientation for MEWS observers | | | | | | | | | | | OC | Log Form orientation | Step-by-step orientation of the MEWS Log Form | | | | | | | | | | | | | Basic MEWS Lessons | | | | | | | | | | | MEWS | S Basic Level Int | roduction | | | | | | | | | | | B1 | Measuring
Temperature | Temperature measurement (in the shade) of the local area Required Equipment: thermometer Optional Equipment: Umbrella, long measuring tape, short measuring tape, ruler | | | | | | | | | | | B2 | Estimating
Wind Speed | Systematic environmental observation of wind effects in the local area. Required Equipment: Modified Beaufort Wind Chart (in Handbook) Optional Equipment: Flag, long measuring tape, short measuring tape, ruler | | | | | | | | | | | В3 | Measuring
Wind
Direction | Systematic measurement of wind azimuth in the local area. Required: Magnetic compass Optional Equipment: Flag, long measuring tape, short measuring tape, ruler | | | | | | | | | | | B4 | Estimating
Cloud Cover | Systematic observation of sky conditions over the local area. Required Equipment: Cloud Cover chart / terms (in Handbook) Optional Equipment | | | | | | | | | | | B5 | Estimating
Cloud Base
Height | Systematic observation of clouds relative to the height of a local mountain or estimated based on cloud type. Required Equipment: Local topographic map (get online or purchase); Cloud ID chart (in Handbook) Optional Equipment: Binoculars | | | | | | | | | | | B6 | Identifying
Cloud Types | Systematic observation and identification of clouds in the local area. Required Equipment: Cloud ID chart (in Handbook) Optional Equipment: Binoculars | | | | | | | | | | | В7 | Estimating
Visual Range | Systematic observation of key local landscape features / landmarks relative to operating position or helicopter Landing Zone Required Equipment: Local topographic map (get online or purchase), ruler Optional Equipment: Binoculars | | | | | | | | | | | B8 | Severe
Weather
Conditions | Systematic observation of local area storms Required Equipment: Instructions on "Flash to Boom" (on MEWS Log and in Handbook) Optional Equipment: Binoculars | | | | | | | | | | | | | Advanced MEWS Lessons | |------------|--------------------------------------|---| | MEWS | S Advanced Level Intro | | | A1 | Relative Humidity
and Heat Stress | Systematic measurement / calculation of relative humidity in the local area. Required Equipment: Hygrometer (buy or instructions to make your own); psychometric table and Heat Stress Index table (in Handbook) Optional Equipment: calculator, long measuring tape, short measuring tape, ruler; buy a digital thermometer with RH function or buy a hygrometer or digital weather station. | | A2 | Wind Speed and
Wind-chill | Systematic measurement of wind speed and calculation of Wind-chill in the local area. Required Equipment: wind speed gauge/meter (by or instructions to make your own); Wind-chill table (in Handbook) Optional Equipment: long measuring tape, short measuring tape, ruler; buy digital anemometer with wind-chill function or digital weather station | | A3 | Dew Point and
Cloud Base Height | Determining Dew Point Temperature and calculating the height of the cloud base in the local area Required Equipment: Dew Point table (in Handbook); Optional Equipment: calculator; buy a digital thermometer with Heat Stress function or a digital weather station. | | A4 | Rainfall | Systematic measurement of rainfall (in 24 hour period) in the local area. Required Equipment: rain gauge (buy or instructions to make your own) Optional Equipment: Buy a digital rain gauge or a digital weather station with a rain gauge. | | A 5 | Severe Weather | Systematic observation of local area storms and use of lightning detector. Required Equipment: lightning detector (buy) Optional Equipment: Digital weather station. | | A6 | Weather
Forecasting | Systematic observation of changes in cloud types, atmospheric pressure, and wind direction. Required Equipment: Cloud ID chart (in Handbook), barometer or barometric altimeter, magnetic compass. | ## To access the MEWS Lessons: Go to www.neighborhoodlink.com/org/rtcth and click on "Pages & Links" Which brings you to this page where you click on "RTC-TH MEWS Lessons" ...which will bring you to this page. Then scroll down the left column and watch for the Section Heading "RTC-TH EmComm / EmPrep / GERC-AI) where you will find the MEWS lesson listed in the suggested sequence of study. ## **Author's Preface** MEWS (the Mobile Emergency Weather Station) evolved from various lesson modules. The original lessons go back to the Field Methods in Geography colleges classes I taught for about the 1989-2007. Some of these lessons were adapted for various extra-curricular environmental education community service training programs in the US. An opportunity arose with the Rural Training Center-Thailand (RTC-TH) to adapt the weather lesson modules for the REEEPP (Rural Environmental Education Enhancement Pilot Project) at Ban Na Fa Elementary School in Nan Province, Thailand. These weather lessons were modified for use in the RTC-TH GROW (Getting Real On-farm Weather) program in support of implementing the King's Theory of Self-sufficiency. My affiliation with GERC (the Glendora Emergency Response Communications) group stimulated my
interest in amateur radio and EmComm (Emergency Communications). So it seemed quite natural to adapt the GROW lessons to create MEWS to serve and sustain our local community in times of emergencies. Amateur radio has a long history of voluntary public service especially in emergencies. As a relative new and inexperienced amateur radio operator, I wanted to make a contribution. MEWS draws on my knowledge, skills, and experience as a teacher of natural sciences to the amateur radio community. The MEWS lessons are designed for self-study. Questions can be posted to the RTC-TH website discussion page or sent by e-mail. Skype (a free internet phone service) can be used to organize conference calls for small group discussion. MEWS is available free for non-commercial purposes in the spirit of the amateur radio tradition. MEWS is not a replacement or competitor of government or private sector meteorologists. MEWS is an emergency service provided by volunteers to gather and report weather data from the disaster area. Natural disasters (e.g. earthquakes, tropical storms, floods, etc.) can spread destruction over wide areas. Existing weather stations may be destroyed or damaged. In some remote areas, there may be no weather station. Local Hams (amateur radio operators) trained in MEWS could provide vital local weather data to help relief workers to better coordinate food, shelter, and clothing needs of the survivors. Emergency helicopter flights benefit by having local weather from the local disaster area. These lessons are a first step on a long journey to improve and adapt the lessons to amateur emergency communications. Suggestions for improvement are welcomed. We are also interested in help to translate these lessons to other languages. MEWS is presented in the spirit of mutual respect, mutual benefit and striving to make the world a better place. It is my hope these lessons will enhance the abilities and skills of amateur radio operators and empower them to provide improved communications services to emergency response officials. These lessons are dedicated to all teachers and seekers of knowledge, and to those who care to share information to empower others to improve and become better people who can better sustain their communities. I would like to express my sincere thanks to: - Mack and Irene Lee, my parents: for the basic values and education that make me what I am today; - Saifon Lee, my wife: and her family for all their support and the opportunity to be in Thailand. - Mark Hayden (N7YLA) for his friendship, mentoring, and collaborative support in teaching and amateur radio emergency communications (EmComm). - Phat Kulphaichitra (HS1WFK) for his friendship and inspirational efforts in Thai EmComm. - Alongkorn Porapukkham (E20NXT) for his friendship, encouragement and introduction to Khun Phat and other Thai amateurs. - My adopted "urban" family, my many friends and former students who directly and indirectly helped and encouraged the development and evolution of these lessons and many other lessons over these past decades. Respectfully, Gregory Lee, HSØZHM RTC-TH Co-founder ## **EMERGENCY FIELD WEATHER OBSERVATIONS** Compiled by G.K. Lee (HSØZHM) ### 1.0 Introduction In times of emergency, first responders to the disaster area need precise information about weather conditions. In many cases, this is not readily available from the disaster area. Current weather conditions at the site of the emergency are important details that affect relief operations. Weather conditions affect: - The well-being of survivors - The water, food, and shelter needs of survivors - Flight operations at the emergency site - Relief operations coming to and at the emergency site A level area is more desirable than an unusual topographic setting. The weather station should not be on a slope, a ridge, or in a sheltered area. The station should be located where surroundings are uniform (i.e. similar surface materials within 30 m of the sensors (e.g. thermometer). Avoid hard surfaces (e.g. pavement, concrete, etc.) as these can distort temperature readings. Avoid being too close to vertical obstructions (trees, buildings, etc.) than four times the height of the obstructions. Set up the station in an area with a 35 degree horizon (i.e. no obstacles should be above 35 degrees on the local horizon). The more weather information you can provide the better. You need some basic equipment to do this: a thermometer, the wind direction (magnetic compass), wind speed chart and cloud cover (see attached forms), and a small to medium glass jar and a ruler. If helicopter flight operations are in progress, give temperature, wind direction / wind speed and visibility data to the pilot before takeoff. | General Weather Effects on | | | | | | | | | | |---|-------------|------------------------------|---|--|--|--|--|--|--| | People in the Disaster Are | а | Helicopter Flight Operations | | | | | | | | | Overall well-being; water, food, clothing / shelter needs. High temperatures and humidity increases risk of heat related stress injuries High winds can increase stress as well as damage tents and temporary shelter Low temperatures and high winds increase risk of wind chill discomfort Cloud cover can reduce temperatures; but if cool enough increases need for clothing and shelter. Lack of cloud cover may increase exposure risk and increase need for clothing and shelter. Rain can supply some needed drinking water. But also increases need for shelter, clothing, food, etc. | Rela
Hum | nds | [Note: Weather conditions can vary dramatically from place to place. Having local weather data can greatly help helicopter flight operations] Overall flight characteristics, cargo / passenger payload, and fuel consumption Strong winds may limit or cancel helicopter flight operations. Cloud base height can limit flight operations. Horizontal visual range restrictions could limit or cancel flight operations. | | | | | | | This handbook is a basic guide to enable amateur radio emergency communications (HAM EmComm) volunteers to make systematic weather observations that would be useful to relief officials. These weather observations are not to replace traditional or official government weather services. The information is provided as raw data made under the harsh and chaotic conditions associated with disasters. This is quite different than routine weather observations made along international and scientific weather observations for official government and research records. The focus of the RTC-TH M.E.W.S. (Mobile Emergency Weather Station) is the systematic Emergency Field Weather Observation Log form. | | | | П | | RTC.TI | MEW | S. Weatl | or Oheo | rvation | Lon | | |---------------------------------|---|---
--	--	--	--
--			M.E.
ideal; Of ts/ 37 km/h, tion steady wind es FROM more directions omes FROM itions in Cloud- rer Table an elevation (at to local Mtn	No flights N NE E SE N NE E SE SCHear Scattlered Broken Over mean se	S SW W NW S SW W NW Cloudy d Overcast ea level) and bove mtn t mtn top	tailwind 5 N NE E SE N NE E SE Clear Scattered Broken report clouds at
km s SW W NW S SW W NW Cloudy Cloudy Covernast sabove_at_c ove mtn mtn top slow mtn m AGL ud ceiting =Cumul	m/h; No flig m/hr, No t N NE E SE N NE E SE D Clear Scattered Clouds at Clouds at Clouds at Clouds at Clouds at No flights	S SW W NW S SW W NW Cloudy Clo	
--	--	--	---
am less than Fog Smoke less than Fog Smoke	Cirrus Altostrat Altocum Stratus Nimstrat Count for last 2 Aain Haze Rain Haze Rain Haze Haze	CuNim Cumul 4 hrs. less than Fog Smoke less than Fog Smoke	Cirrus Altostrat Altocum Stratus Nimstrat Rain Haze Rain Haze
generator if any) and overhead clearance for antennas (including guy lines for antenna masts). [Note: Even though you may operate without guy lines, helicopter rotor downwash create very strong winds.] If possible, set up radio station with a clear view of the LZ and approach paths. Layout traffic flow to avoid interference of movement to and between the radio station and LZ. 	Open / Clear Area [Note: Think where radio station and LZ will be set up.]	 About the size of a football field; helicopter lands in a square ~25m on a side (not smaller than ~17m on a side) No vertical obstructions in 100 m long approaches to the LZ Two approaches (in and out) that are 90° apart. Allow room for safe zones for ground personnel and evacuees. 	
The instrument should be in a shaded location about 1.5 > m above the ground. Other siting criteria: 1) open area with clear overhead air circulation; 2) keep a distance 4 X the height of nearby objects; 3) 33 m away from paved roads; and 4) surrounded by natural ground cover typical of your area. Record the Air temperature 3 times each day in the spaces provided in Line 2.1. Various thermometers are shown below. They range from Basic (on the left) to Advanced (on the right) °C %RH □ Ex Cautn □Ex Dangr °C %RH □Ex Ďanor %RH □ Ex Cautn □Ex Dangr Use an umbrella if shade is not available. Keeping things simple assures you can still get the job done under worstcase scenarios. ### 2.2 Wet Bulb Temperature: Read and record the temperature from the Wet Bulb Thermometer on a hygrometer. You do not report this temperature. You will use it to calculate the Relative Humidity.		2.1	Air (Dry bulb)
93	86	78	71
---------------|---| | For survivors | Tents and bedding will become damp or wet. People sleeping in the open will get wet and cold. Given advanced warning, dew can be a source of clean drinking water if collected with clean collection containers. Relative humidity will increase. If temperatures are low, people will feel colder than the measured air temperature. | | For air crews | • Local ground observers at the landing zone (LZ) can use the Dew Point Temperature to calculate the height from the ground to the base of the lower clouds. This is called the "ceiling") and can set restrictions of flight operations. | | | DEW POINT TEMPERATURE CHART (°C) Dry Bulb temperature minus Wet Bulb temperature in °C | | | | | | | | | | | | | | | | | |------------------|---|-----|-----|-----|-----|-----|-----------|----------|----------|--------|--------------|-----------|------|------|------|------|------| | | | | | | | Dr | y Bulb te | emperatu | re minus | Wet Bu | lb tempe | rature in | °C | | | | | | | | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 7.5 | 10.0 | 12.5 | 15.0 | 17.5 | 20.0 | | | -20 | -25 | -33 | | | | | | | | | | | | | | | | | -17.5 | -21 | -27 | -38 | | | | | | | | | | | | | | | | -15 | -19 | -23 | -28 | | | | | | | | | | | | | | | | -12.5 | -15 | -18 | -22 | -29 | | | | | | | | | | | | | | | -10 | -12 | -14 | -18 | -21 | -27 | -36 | | | | | | | | | | | | () | -7.5 | -9 | -11 | -14 | -17 | -20 | -26 | -34 | | | | | | | | | | | ပွ | -5 | -7 | -8 | -10 | -13 | -16 | -19 | -24 | -31 | | | | | | | | | | <u>e</u> | -2.5 | -4 | -6 | -7 | -9 | -11 | -14 | -17 | -22 | -28 | -41 | | | | | | | | atr | 0 | -1 | -3 | -4 | -6 | -8 | -10 | -12 | -15 | -19 | -24 | | | | | | | | (Air Temperature | 2.5 | 1 | 0 | -1 | -3 | -4 | -6 | -8 | -10 | -13 | -16 | | | | | | | | <u> </u> | 5 | 4 | 3 | 2 | 0 | -1 | -3 | -4 | -6 | -8 | -10 | -48 | | | | | | | ē | 7.5 | 6 | 6 | 4 | 3 | 2 | 1 | -1 | -2 | -4 | -6 | -22 | | | | | | | . <u> </u> | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 2 | 1 | 0 | -2 | -13 | | | | | | | ⋖ | 12.5 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 4 | 3 | 2 | -7 | -28 | | | | | | <u> </u> | 15 | 14 | 13 | 12 | 12 | 11 | 10 | 9 | 8 | 7 | 5 | -2 | -14 | | | | | | 돭 | 17.5 | 17 | 16 | 15 | 14 | 13 | 12 | 12 | 11 | 10 | 8 | 2 | -7 | -35 | | | | | ers | 20 | 19 | 18 | 18 | 17 | 16 | 15 | 14 | 14 | 13 | 12 | 6 | -1 | -15 | | | | | <u>e</u> | 22.5 | 22 | 21 | 20 | 20 | 19 | 18 | 17 | 16 | 16 | 5 | 10 | 3 | -6 | -38 | | | | Temperature | 25 | 24 | 24 | 23 | 22 | 21 | 21 | 20 | 19 | 18 | 18 | 3 | 7 | 0 | -14 | | | | 1 | 27.5 | 27 | 26 | 26 | 25 | 24 | 23 | 23 | 22 | 21 | 20 | 16 | 11 | 5 | -5 | -32 | | | Bulb | 30 | 29 | 29 | 28 | 27 | 27 | 26 | 25 | 25 | 24 | 23 | 19 | 14 | 9 | 2 | -11 | | | — | 32.5 | 32 | 31 | 31 | 30 | 29 | 29 | 28 | 27 | 26 | 26 | 22 | 18 | 13 | 7 | -2 | | | Dry | 35 | 34 | 34 | 33 | 32 | 32 | 31 | 31 | 30 | 29 | 28 | 25 | 21 | 16 | 11 | 4 | | | _ | 37.5 | 37 | 36 | 36 | 35 | 34 | 34 | 33 | 32 | 32 | 31 | 28 | 24 | 20 | 15 | 9 | 0 | | | 40 | 39 | 39 | 38 | 38 | 37 | 36 | 36 | 35 | 34 | 34 | 30 | 27 | 23 | 18 | 13 | 6 | | | 42.5 | 42 | 41 | 41 | 40 | 40 | 39 | 38 | 38 | 37 | 36 | 33 | 30 | 26 | 22 | 17 | 11 | | | 45 | 44 | 44 | 43 | 43 | 42 | 42 | 41 | 40 | 40 | 39 | 36 | 33 | 29 | 25 | 21 | 15 | | | 47.5 | 47 | 46 | 46 | 45 | 45 | 44 | 44 | 43 | 42 | 42 | 39 | 35 | 32 | 28 | 24 | 19 | | | 50 | 49 | 49 | 48 | 48 | 47 | 47 | 46 | 45 | 45 | 44
20°C W | 41 | 38 | 35 | 31 | 28 | 23 | - Use the hygrometer to get the Dry Bulb and the Wet Bulb Temperature. Example, Dry Bulb = 30°C, Wet Bulb = 28°C. - Subtract the Wet Bulb temperature from the Dry Bulb temperature. Example, $30^{\circ}\text{C} 28^{\circ}\text{C} = 2^{\circ}\text{C}$. - Find the column for 2°C across the top of the chart. Locate 30°C in the Air Temperature column at the left side of the chart. Find the intersection of the column and row to get the Dew Point Temperature. For the example of 2°C and 30°C, the Dew Point Temperature is 27°C. - Divide 27°C by 10°C = 2.7 X 1000 m = 2700 m (the altitude of the bottom of the clouds) ^{© 2011,} G.K. Lee. All rights reserved. 2.6 Heat Stress Index tells you the sensible temperature due to a combination of high temperature and humidity. This is the temperature people "feel". It is not the same as the air temperature indicated by the thermometer. This is a | | 2.1 | Air (Dry bulb) | Thermometer in shade; 1.5 | | °C | | °C | | °C | |-------------|-----|----------------|----------------------------|-------------|------------|-------------|------------|-------------|------------| | Humidity | 2.2 | Wet Bulb | m above ground | | °C | | °C | | °C | | ĮĘ. | 2.3 | Difference | Subtract 2.2 from 2.1; | | °C | | °C | | °C | | | 2.4 | Rel. Humidity | Use 2.1, 2.3; R H Table | | %RH | | %RH | | %RH | | Relative | 2.5 | Dew Point | Use 2.1, 2.3; Dew Pt Table | | °C | | °C | | °C | | - | Г | | Use 2.1, 2.4 ; HSI Table | Heat Stress | ₃ °C | Heat Stress | ₃ °C | Heat Stress | 3 C | | Temperature | 2.6 | Heat Stress | Danger Level (if any from | □Cautn | □Danger | □Cautn | □Danger | □Cautn | □Danger | | <u>a</u> . | _ | | | | | | | | | | Leu | | | Use 2.1, 3.1; Wind Chl Tbl | Wind Chill. | °C | Wind Chill. | °C | Wind Chill. | °C | | - | 2.7 | Wind Chill | Danger Level (if any from | □Trvl Dngr | □Frstbte10 | □Trvl Dngr | □Frstbte10 | □Trvl Dngr | □Frstbte10 | | 7 | | | Wind Chill chart) | □TShltr Dgr | □Frstite30 | □TShltr Dgr | □Frstite30 | □TShltr Dgr | □Frstite30 | | | | | wind Chill Chart) | □Frostbite | □Frstbte5 | □Frostbite | □Frstbte5 | □Frostbite | □Frstbte5 | measure of discomfort using the Air (Dry Bulb) temperature (Line 2.1), the Relative Humidity (Line 2.4), and the Heat Stress Index (H.S.I.) Chart. In Thailand, tropical heat and humidity can result in a high risk of various heat related illnesses. Combined with a general shortage of clean drinking water and shelter means many survivors are at risk of dehydration, sun and heat stroke, and even death. Onsite weather reports that provide the Heat Stress Index can help relief organizers set priorities that can save lives. [Advisory Note: During times of danger avoid heavy work between 1100-1500 hrs on sunny days, or plan extra shaded rest and water rations to prevent dehydration.] Record the H.S.I. temperature in the space provided in the upper part of Line 2.6. Any Danger advisory notice would be indicated by checking the appropriate box in the lower part of Line 2.6. For example, if the air temperature was 32°C with a relative humidity of 70%. This is how to use the table: - **Step 1.** Find the Air temperature in the left-hand column on the chart. - **Step 2.** Find the Relative Humidity in the top row of the chart. - Step 3. Follow the row for 32°C until it intercepts the column for 70% Relative Humidity. The sensible temperature is 51 °C. This means that although the air temperature is 32°C, people feel as though it were 51 °C. - Step 4. Look up the warning advisory for the orange color. In this example, this combination of heat and humidity qualifies as a | | H | leat S | Str | ess Ind | ex | (Sei | nsible 1 | Гer | nper | ature) | | | |------------------|---|---------------|----------|--|----------------------------|--------------------------|--|---------------------|--------|---|-----------------------------|---| | Air Tonon | | | | | | Rela | itive Hum | nidi | ty | | | | | Air Temp | 10% | 20% | 6 | 30% | 40 |)% | 50% | (| 50% | 70% | 80% | 90% | | 46°C | 44°C | 49°(| С | 57°C | 66 | °C | | | | | | | | 43°C | 41°C | 44°(| С | 51°C | 58 | °C | 56°C | | | | | | | 41°C | 38°C | 41°(| С | 45°C | 51 | °C | 57°C | 6 | 55°C | | | | | 38°C | 35°C | 37°(| С | 40°C | 43 | 8°C | 49°C | - 5 | 56°C | 62°C | | | | 35°C | 32°C | 34°(| c T | 36°C | 38 | 3°C | 42°C | 4 | 16°C | 51°C √ | 58°C | | | 32°C | 29°C | 31°0 | С | 32°C | 34 | Р°С | 36°C | 3 | 38°C | 41°C | 45°C | 50°C | | 29°C | 27°C | 28°0 | С | 29°C | 30 |)°C | 31°C | 3 | 32°C | 34°C | 36°C | 36°C | | 27°C | 24°C | 25°(| С | 26°C | 26 | °C | 27°C | 2 | 28°C | 29°C | 30°C | 31°C | | Danger
Level | I Cauti | on | | II Extreme
Caution | е | - 1 | II Danger | | | Extreme
Janger | | | | Heat
Index | 27-32° | С | | 32-40°C | | | 40-54°C | | Abo | ve 54°C | | e humidity
observed | | Heat
Syndrome | Fatigue pos
with prolor
exposure a
physical ac | nged
nd/or | exh
o | Sunstroke, he cramps, or he naustion pos with prolonge exposure and only size and only size active arctives. | eat
sible
ed
l/or | exh
heat
wi
exp | instroke, hea
amps, or hea
naustion likely
stroke possil
th prolonged
posure and/o
ysical activity | t
/;
ble
r | highly | / sunstroke
/ likely with
ed exposure | applic
condition
extr | rally not
able but
is would b
remely
gerous | - - Air Temperature is read from the Dry Bulb Thermometer. - Relative Humidity is calculated using the Relative Humidity Table. This requires the following data: Air Temperature and the Temperature Difference between the Dry and Wet Bulb readings. | | 2.1 | Air (Dry bulb) | Thermometer in shade; 1.5 | | °C | | °C | | °C |
-------------|-----|----------------|------------------------------|---------------------------|--------------------------|------------------------|--------------------------|------------------------|--------------------------| | dity | 2.2 | Wet Bulb | m above ground | | °C | | °C | | °C | | Humidity | 2.3 | Difference | Subtract 2.2 from 2.1; | | °C | | °C | | °C | | | 2.4 | Rel. Humidity | Use 2.1, 2.3; R H Table | | %RH | | %RH | | %RH | | / Relative | 2.5 | Dew Point | Use 2.1, 2.3; Dew Pt Table | | °C | | °C | | °C | | | | | Use 2.1, 2.4 ; HSI Table | Heat Stress | ₃ °C | Heat Stress | s °C | Heat Stress | 3 C | | Temperature | 2.6 | Heat Stress | Danger Level (if any from | □Cautn | □Danger | □Cautn | □Danger | □Cautn | □Danger | | 8. | | | Trout our coo in acre talong | | | | | | | | Lem | | | Use 2.1, 3.1; Wind Chl Tbl | Wind Chill. | °C | Wind Chill. | °C | Wind Chill. | °C | | 2. | 2.7 | Wind Chill | Danger Level (if any from | □Trvl Dngr
□TShltr Dgr | □Frstbte10
□Frstite30 | □Trvl Dngr □TShltr Dgr | □Frstbte10
□Frstite30 | □Trvl Dngr □TShltr Dgr | □Frstbte10
□Frstite30 | | | | | Wind Chill chart) | □Frostbite | □Frstbte5 | □Frostbite | □Frstbte5 | □Frostbite | □Frstbte5 | Type III = Danger. The types of heat related illnesses are described in the chart. If there is a Danger level advisory, check the appropriate box in the lower part of Line 2.6. This should be reported to the authorities so they can consider this in their disaster relief planning efforts. 2.7 Wind Chill Temperature tells you the sensible temperature due to low Air temperatures and High wind speeds. This combination makes people feel colder than the measured temperature. | | 2.1 | Air (Dry bulb) | Thermometer in shade; 1.5 | | °C | | °C | | 0 | |-------------|-----|----------------|--|---|---------------------------------------|---|---------------------------------------|---|-----------------------------------| | dity | 2.2 | Wet Bulb | m above ground | | °C | | °C | | 0 | | Humidity | 2.3 | Difference | Subtract 2.2 from 2.1; | | °C | | °C | | 0 | | | 2.4 | Rel. Humidity | Use 2.1, 2.3; R H Table | | %RH | | %RH | | %R | | Relative | 2.5 | Dew Point | Use 2.1, 2.3; Dew Pt Table | | °C | | °C | | 0 | | _ | | | Use 2.1, 2.4 ; HSI Table | Heat Stress | °C | Heat Stress | °C | Heat Stress | 9 | | ratu | 2.6 | Heat Stress | Danger Level (if any from | □Cautn | □Danger | □Cautn | □Danger | □Cautn | □Danger | | Temperature | Г | | Use 2.1, 3.1; Wind Chl Tbl | Wind Chill. | °C | Wind Chill. | °C | Wind Chill. | | | 2. | 2.7 | Wind Chill | Danger Level (if any from
Wind Chill chart) | □Trvl Dngr
□TShltr Dgr
□Erostbite | □Frstbte10
□Frstite30
□Frstbte5 | □Trvl Dngr
□TShltr Dgr
□Frostbite | □Frstbte10
□Frstite30
□Frstbte5 | □Trvl Dngr
□TShltr Dgr
□Erostbite | □Frstbte
□Frstite3
□Frstbte | At first glance, it seems this condition is inconsistent with the humid tropics. However, on mountains and places with higher elevations, winds can be rather strong. And as you increase your altitude, temperature decreases. So while injuries due to extreme cold may not occur, survivor discomfort when faced with shortages of clothing and shelter can be increased. Most concern about wind chill deals with the extreme low temperatures associated with frostbite. The table calculations are for conditions of 5°C or less. For the tropics, the concern would be the cooling effect of the wind under conditions of high humidity and the fragile condition of survivors. They may have little or no shelter, bedding, or clothing. In some situations, the cooling effect of the wind may be welcomed. In other circumstances, the cooling effect may bring added discomfort and suffering for the weak and injured. Although this table may not directly apply in the tropics, it is included in case other volunteers in Southeast Asia (or the world) may need it for their locations. To determine the Wind Chill sensible temperature, you will need the Air (Dry Bulb) temperature from Line 2.1, the Wind Speed from Line 3.1, and the Wind Chill chart. [**Note:** Details on measuring wind speed will be presented in the Section 3 of this handbook.] For example, at a temperature of -5 °C and a wind speed of 35 km/h, find the Wind Chill. **Step 1.** Find the Wind speed in the left column. **Step 2.** Find the air temperature across the row. Step 3. Find the intercept of the row and column (-14 °C). This means a person would feel the temperature was -14 °C and not the -5 °C showing on the Wind Chill Measured Air Temperature (°C) -35 -40 5 -7 -19 -41 -47 10 -9 3 2 -15 -45 -51 15 -11 -17 20 -12 -18 -24 -37 Wind Velocity (km/h) 25 30 -19 1 -12 -38 -57 0 0 -40 **-47** -14 -20 -60 40 -1 48 -14 -34 -21 -21 **-41** -61 42 45 -1 -15 -1 -15 -35 -2 -2 -2 43 -50 -15 43 60 -9 -16 -37 44 -51 70 -2 -16 -17 -59 -10 45 -31 -38 45 80 -3 -10 -17 Travel can be dangerous minutes Use heated vehicles; temporary thermometer. Record the temperature in the space provided in the upper part of Line 2.1. **Step 4.** Look at the color coded notes for warnings. If any, check the appropriate box in the lower part of Line 2.1. ^{© 2011,} G.K. Lee. All rights reserved. | | | Hea | t S | tress Inc | lex (| Sen | sible Te | mp | eratu | re) | | | |------------------|--|-----------------|----------|---|------------------------|------------------------------|---|-----------|-------|--|--------------------------------|--| | Air Tomp | | | | | | _ | tive Humi | _ | | • | | | | Air Temp | 10% | 20% | 6 | 30% | 40 |)% | 50% | (| 80% | 70% | 80% | 90% | | 46°C | 44°C | 49°(| 2 | 57°C | 66 | °C | | | | | | | | 43°C | 41°C | 44°(| 2 | 51°C | 58 | °C | 56°C | | | | | | | 41°C | 38°C | 41°(| 2 | 45°C | 51 | °C | 57°C | 6 | 5°C | | | | | 38°C | 35°C | 37°0 | 2 | 40°C | 43 | °C | 49°C | 5 | 6°C | 62°C | | | | 35°C | 32°C | 34°0 | 3 | 36°C | 38 | °C | 42°C | 4 | ŀ6°C | 51°C | 58°C | | | 32°C | 29°C | 31°0 | <u> </u> | 32°C | 34 | ·°C | 36°C | 3 | 8°C | 41°C | 45°C | 50°C | | 29°C | 27°C | 28°0 | <u> </u> | 29°C | 30 | °C | 31°C | 3 | 32°C | 34°C | 36°C | 36°C | | 27°C | 24°C | 25°0 | \Box | 26°C | 26 | °C | 27°C | 2 | 2°C | 29°C | 30°C | 31°C | | Danger
Level | I Caution | on | | II Extreme
Caution | 9 | ı | II Danger | | | Extreme
Danger | - | | | Heat
Index | 27-32° | С | | 32-40°C | | | 40-54°C | | Abo | ove 54°C | | humidity
bserved | | Heat
Syndrome | Fatigue possil
prolonged ex
and/or phy
activity | posure
sical | ex | Sunstroke, he cramps, or he xhaustion poss with prolonge exposure and/physical activi | at
sible
d
or | cr
exhai
stro
prole | unstroke, heat
amps, or heat
ustion likely; h
ke possible wi
onged exposu
nd/or physical
activity | eat
th | highl | / sunstroke
y likely with
ued exposure | applica
condition:
extre | ally not
able but
s would be
emely
erous | - Use a hygrometer placed in a shaded position about 1.2 m / 5 ft above the ground. - Air Temperature is read from the Dry Bulb Thermometer. Relative Humidity is calculated using the Relative Humidity Table. This requires the following data: Air Temperature and the Temperature Difference between the Dry and Wet Bulb readings. | | | | | | Wi | nd Chill | | | | | | |---------------|------|-------|----------------|-------------|--------|---------------|------------------|-------------------|----------|-------------|-----------| | | | | | | Measu | red Air Ter | nperatur | e (°C) | | | | | | 0 | 5 | 0 | -5 | -10 | -15 | -20 | -25 | -30 | -35 | -40 | | | 5 | 4 | -2 | -7 | -13 | -19 | -24 | -30 | -36 | -41 | -47 | | | 10 | 3 | -3 | -9 | -15 | -21 | -27 | -33 | -39 | -45 | -51 | | | 15 | 2 | -4 | -11 | -17 | -23 | -29 | -35 | -41 | -48 | -54 | | | 20 | 1 | -5 | -12 | -18 | -24 | -31 | -37 | -43 | -49 | -56 | | (km/h) | 25 | 1 | -6 | -12 | -19 | -25 | -32 | -38 | -45 | -51 | -57 | | X | 30 | 0 | -7 | -13 | -20 | -26 | -33 | -39 | -46 | -52 | -59 | | . <u>≥</u> . | 35 | 0 | -7 | -14 | -20 | -27 | -33 | -40 | -47 | -53 | -60 | | Wind Velocity | 40 | -1 | -7 | -14 | -21 | -27 | -34 | -41 | -48 | -54 | -61 | | \

 | 45 | -1 | -8 | -15 | -21 | -28 | -35 | -42 | -48 | -55 | -62 | | þ | 50 | -1 | -8 | -15 | -22 | -29 | -35 | -42 | -49 | -56 | -63 | | Ν | 55 | -2 | -9 | -15 | -22 | -29 | -36 | -43 | -50 | -57 | -63 | | _ | 60 | -2 | -9 | -16 | -23 | -30 | -37 | -43 | -50 | -57 | -64 | | | 65 | -2 | -9 | -16 | -23 | -30 | -37 | -44 | -51 | -58 | -65 | | | 70 | -2 | -9 | -16 | -23 | -30 | -37 | -44 | -51 | -59 | -66 | | | 75 | -3 | -10 | -17 | -24 | -31 | -38 | -45 | -52 | -59 | -66 | | | 80 | -3 | -10 | -17 | -24 | -31 | -38 | -45 | -52 | -60 | -67 | | emC | OM/n | | el can be danç | | | min | te in 30
utes | Frost-
bite in | Frostbi | te within 5 | minutes | | 1 | | Us | e heated vehic | cles; tempo | orary | Starts da | nger of | 10 mi | nutes | Adap | oted by | | Po C | nd . | shelt | ers unsuitable | and dang | erous. | frostbite and | possible de | eath. | G.K. Lee | for RTC-TI | HM.E.W.S. | ## 3.0 Wind Speed / Direction **3.1 Wind Speed** can be determined indirectly by observing its effects on the environment or directly using wind meters / gauges. Wind speed observations should be done in clear open areas away from tall buildings or trees. Winds are not always steady and constant. So Line 3.1 has space for recording steady winds and gusts. For steady winds, try to make 3 | | | | | | | | | | | | | _ | | | | |-----------|-----
---------------|------------------------------|--------|--------|------|-------|-------|--------|--------|-------|------|-------|--------|------| | Direction | | Average | Get 3 readings & average | | km/h | | knts | , . | km/h | o un | knts | | km/h | | knts | | | 3.1 | Gusts | Record highest gust | | km/h | | knte | | km/h | | knto | | km/h | | knto | | pa / | | | Wind Speed Guide | eline | es for | · He | licop | ter F | ligh | t Op | erati | ons | | | | | Speed | | 10 knot | ts / 18.5 km/h ideal; OK | to fl | / | | Al | oove | 45 kı | nots / | 83 kr | n/h; | No fl | ights. | | | Wind | | Gusts abo | ve 20 knots/ 37 km/h; N | lo fli | ghts | | Max | tailv | vind 5 | knot | s/6 k | m/hr | No. | take o | off | | 3 | | Steady Wind | Circle direction steady wind | N | NE | S | SW | N | NE | S | SW | N | NE | S | SW | | | 3.2 | Direction | comes FROM | Е | SE | W | NW | Е | SE | W | NW | Е | SE | W | NW | | () | 3.2 | Variable Wind | Circle 1 or more directions | N | NE | S | SW | N | NE | S | SW | N | NE | S | SW | | | | Direction | wind comes FROM | E | SE | W | NW | E | SE | W | NW | E | SE | W | NW | observations, then average them before recording and reporting the wind speed. Gusts may be sudden and infrequent. But if gusty conditions persist, try to get an idea of the "average" but air crews should be advised of the maximum gust you observed. In that case, report maximum gusts to "__" knots, averaging "__" knots. Estimating the wind speed visually requires using the Beaufort Scale for wind effects on land. To use the chart: - Step 1. Look around for signs of the wind. Step 2. Look at the left column and find the description that fits what you see. - **Step 3.** Read across the row to the column for km/h and knots. Record the estimated wind speed in the space provided in Line 3.1. [**Note:** Report wind speeds in knots to air crews.] The chart and weather observation log have been annotated with reminders of wind speeds affecting helicopter flight operations. When wind speeds approach these advisory levels you should report the advisory to air crews immediately. Direct measurement of wind speed is done using a wind gauge or meter. | M.E.W.S | | Beaufor | t Wind | Tak | ole fo | r Lan | nd Eff | ects | |---|-----------|---|------------------|----------|-------------|------------|-------------|---------------------------| | 3 6 2 6 | Descripti | veather observ
ion and flag ret
rom the chart r | erences to e | stimate | the wind | speed. F | | range of wind | | Description | 1 | Flag | WMO | Mph | Km/ hr | Knots | Force | Psu lbs/sq f
(Kg/sq m) | | | | | term | R | eport win | d speed i | in knots to | flight crews | | Calm; smoke ri
vertically | | | Calm | <1.0 | <1.5 | <0.9 | 0 | 0.006266
(0.003059) | | Smoke indicates wi
hangs limp, wind va
not move | | To The | Light Air | 1-3 | 1.5-6 | 1-3 | 1 | 0.02924
(.01428) | | Wind felt on face,
rustle, flag stirs, | | M | Light
breeze | 4-7 | 6-12 | 4-6 | 2 | 0.142
(0.6934) | | vanes move | | 167 | 5 K | nots ma | ximum ta | ilwind for | r helicopte | er take-off | | Leaves and twig | | 1 | Gentle
Breeze | 8-12 | 12-20 | 7-10 | 3 | 0.3759
(1.835) | | occasionally ext | ends | fred _ | - 10 |) Knots | ideal for l | helicopte | r flight op | erations | | Dust and paper fly
branches move; Fla | | Te : | Mild
Breeze | 13-18 | 21-29 | 11-16 | 4 | 0.8145
(3.977) | | small leafy trees b
sway; white cre-
wavelets appea | sted | | Fresh
Breeze | 19-24 | 30-39 | 17-21 | 5 | 1.504
(7.342) | | lakes/ponds; Flag | ripples | | 20 Kno | ts maxi | num gust | s for heli | copter flig | ht operations | | Large branches r
wires whistle; umb
hard to use; Flag | orellas | | Strong
Breeze | 25-31 | 40-50 | 22-27 | 6 | 2.485
(12.13) | | Whole trees sway;
walk; Flag exter | nded | | Near Gale | 32-38 | 51-61 | 28-33 | 7 | 3.822
(18.66) | | Twigs and small br
broken; cars vee
roads; Flag tatt | eron | 2 | Gale | 39-46 | 62-74 | 34-40 | 8 | 5.597
(27.33) | | Slight structural da
occurs (roof shingle | | A | Strong
Gale | 47-54 | 75-87 | 41-47 | 9 | 7.769
(37.93) | | off) | | Total Park | 45 Kno | ts maxir | mum wind | s for heli | copter flig | ht operations | | Trees broken or up
considerable dam
buildings | | N. Control | Storm | 55-63 | 38-101 | 48-55 | 10 | 10.53
(51.39) | | Wide spread dar | nage | | Violent
Storm | 64-72 | 02-114 | 56-63 | 11 | 13.78
(67.3) | | caused | | | Hurricane | >73 | >115 | >63 | 12 | >13.78 (>67.3) | Dwyer wind gauge Kestrel 3500 pocket weather station Fully integrated field weaterh station sensor array Wind gauges or gauges can be small hand held devices or more complete weather station units. Some are marked in units of mph while others can be set for various units. Report all wind speeds to air crews as "knots" to make it easier for them to use. ## **Beaufort Wind Table for Land Effects** MEWS weather observers should set up a flag near their operating position. Use the Description and flag references to estimate the wind speed. Report the range of wind speeds from the chart rather than a specific number. | Flag | WMO | Mph | Km/ hr | Knots | Force | Psu lbs/sq ft
(Kg/sq m) | |-----------|------------------|--|---|---|---|-----------------------------------| | | term | Re | eport win | d speed i | n knots to | flight crews | | | Calm | <1.0 | <1.5 | <0.9 | 0 | 0.006266
(0.003059) | | A Company | Light Air | 1-3 | 1.5-6 | 1-3 | 1 |
0.02924
(.01428) | | Br | Light
breeze | 4-7 | 6-12 | 4-6 | 2 | 0.142
(0.6934) | | 1 en | | nots ma | ximum ta | ilwind for | helicopte | | | 1 | Breeze | 8-12 | 12-20 | 7-10 | 3 | 0.3759
(1.835) | | feat | 10 |) Knots | ideal for h | nelicopter | flight ope | erations | | | Mild
Breeze | 13-18 | 21-29 | 11-16 | 4 | 0.8145
(3.977) | | | Fresh
Breeze | 19-24 | 30-39 | 17-21 | 5 | 1.504
(7.342) | | | 20 Kno | ts maxin | num gust | s for helic | copter flig | ht operations | | | Strong
Breeze | 25-31 | 40-50 | 22-27 | 6 | 2.485
(12.13) | | | Near Gale | 32-38 | 51-61 | 28-33 | 7 | 3.822
(18.66) | | 23 | Gale | 39-46 | 62-74 | 34-40 | 8 | 5.597
(27.33) | | - | l | ı | 1 | ı | l | | | | Strong
Gale | 47-54 | 75-87 | 41-47 | 9 | 7.769
(37.93) | | | Gale | | | | | | | | Gale | | num wind | | | (37.93) | | | Gale
45 Knot | s maxin
55-63 | num wind | s for heli | copter flig | (37.93)
ht operations
10.53 | | | Flag | Calm Light Air Light breeze 5 K Gentle Breeze Mild Breeze Fresh Breeze 20 Known Strong Breeze Near Gale | Calm <1.0 Light Air 1-3 Light breeze 4-7 5 Knots ma Gentle Breeze 8-12 10 Knots Mild Breeze 13-18 Fresh Breeze 19-24 20 Knots maxir Strong Breeze 25-31 Near Gale 32-38 | Calm | Calm | Report wind speed in knots to | **Disclaimer:** Use of the pressure data to calculate tower/antenna wind loads is at your own risk. The RTC-TH and HSØZHM assume no liability for the use of this data. Pressure values are the upper limits for a wind category. To use a handheld unit, follow the instructions for the particular unit. In general: - Step 1. Stand in an open area away from tall buildings and trees. Also: A) open area with clear overhead air circulation; B) keep a distance 4 X the height of nearby objects; C) 33 m away from paved roads; and D) be surrounded by natural ground cover typical of your area. Hold the unit above your head and watch the indicator. - If the wind speed readings are fairly consistent, the winds are steady. If the readings jump around, the wind speed is variable. - Variable wind speeds could be associated with gusts. **Note**: For the Dwyer wind gauge we have is marked in miles per hour (mph). The readings need to be converted using a reference table (see below). This wind gauge has 2 scales, Lo (2-10 mph) and Hi (4- 66 mph). To decide which scale to use, watch the white indicator ball in the central tube. If it is below 10 mph, use the Lo scale. If above 10 mph, use the Hi scale. To shift to the Hi scale, place a finger over the red tube at the top of the instrument. Step 2. Record the measured wind speed. Repeat Step 1 until you have 3 measurements. Step 3. Average the 3 readings and record the average wind speed in the space provided on Line 3.1. - **Step 4.** Use the conversion table below to record the wind speed in both knots and km/h in Section 3.1 of the MEWS Log form. Use the upper line in Section 3.1 for regular winds. Use the lower line to record Gusts. - Step 5. Issue a Flight Advisory if any wind speeds or gusts are near, at, or above the limits indicated on the MEWS Log form. If operating / supporting a helicopter landing zone, advise officials immediately. | | | V | /ir | nd Spe | ed Conv | /ers | sion T | ab | le | | | |-----|-------------|---------------|-----|------------|---------------|-------|-------------|------|-------------|-------------|-------------| | mph | km/h | knots | | mph | km/h | k | nots | | mph | km/h | knots | | 1 | 1.61 | 0.869 | | 9 | 14.48 | 7 | 7.821 | | 45 | 71.42 | 39.10 | | 2 | 3.22 | 1.738 | | 10 | 16.09 | 3 | 8.69 | | 50 | 80.47 | 43.45 | | 3 | 4.83 | 2.607 | | 15 | 24.14 | 1 | 13.03 | | 55 | 88.51 | 47.79 | | 4 | 6.44 | 3.476 | | 20 | 32.19 | 1 | 17.38 | | 60 | 96.56 | 52.14 | | 5 | 8.05 | 4.345 | | 25 | 40.23 | 2 | 21.72 | | 65 | 104.60 | 56.48 | | 6 | 9.66 | 5.214 | | 30 | 48.28 | 2 | 26.07 | | 70 | 112.70 | 60.83 | | 7 | 11.27 | 6.083 | | 35 | 56.33 | 3 | 30.41 | | 75 | 120.70 | 65.17 | | 8 | 12.87 | 6.592 | | 40 | 64.37 | 3 | 34.76 | | 80 | 128.70 | 69.52 | | | | Re | epc | ort wind s | speeds in k | knot | ts to air d | cre | WS. | | | | | | Wind Spe | ed | Guidelir | nes for Heli | icop | oter Fligh | nt C | perations | 5 | | | | 10 knots | / 18.5 km/h i | de | al; OK to | fly | | Abov | /e 4 | 5 knots / 8 | 33 km/h; No | Flights | | G | iusts above | 20 knots / 3 | 7 k | m/h; No I | Flights | | Max tai | lwii | nd 5 knots | / 6 km/h; N | o take off. | | | | Advise air ci | rev | vs when v | vind velociti | ies a | approach | gu | ideline lim | its. | | **3.2 Wind Direction:** The wind can also come from a steady direction or be highly variable. Winds are named based on the direction FROM which they come. If you are familiar with the area, you may know the basic directions (e.g. north, south, east, and west). However, if operating in an unfamiliar area, using a magnetic compass is helpful. Pictured below are some examples of compasses you might find in stores. To measure the wind direction, see the steps in the diagram below. This also shows the convention matching direction names with azimuth numbers. Imagine you are standing in the middle of the circle in the picture on the left. - Step 1. Stand facing the wind (looking into the direction from which the wind is blowing). - Step 2. Aim the magnetic compass directly into the wind, but keep the compass level so the needle swings freely. - Step 3. Read off the azimuth angle in degrees ranging from 0° (starting at North) going clockwise around the circle or report the general name (e.g. North, Northeast, etc.) - Step 4. Change the azimuth number into the name of the direction using the table below. Ultra precision is not needed. The general direction is good enough. Record the data in Line 3.2 by circling the appropriate direction in the "steady" or "variable" section. It's probably best to report wind directions using the terms North, Northeast, etc. rather than magnetic azimuth numbers. The terms are more general. An azimuth number may imply precision which may or may not exist. **Note:** And to keep things simple, we haven't talked about correcting for magnetic declination or determining local magnetic anomalies that can distort magnetic compass readings. The magnetic declination for most of Nan Province is less than 1°. Most consumer grade magnetic compasses readily available to MEWS volunteers have scale markings in 2° to 5° increments. This makes it impossible to accurately correct for magnetic declination to convert magnetic azimuths to True North readings. The compass on the left appears to be "better" than the one on the right. However, both are fairly general in terms of their scale markings. For the compass on the left, the smallest azimuth increment is 2°, and about 9° for the compass on the right. You cannot get very precise measurements with these compasses. Record the wind direction by circling the appropriate letters in Section 3.2 on the MEWS Log form. Use the upper line for steady winds. Use the lower line for variable winds and gusts. | | | | Depart wind appea | lin L | | 4 | | | ma/lb + | الم | ath are | _ | | | _ | |-----------|-----|---------------|------------------------------|---------|-------|-------|-------|-------|-----------|--------|---------|--------|--------|-------|-----| | | | | Report wind speed | ı III A | 11015 | to ai | Cle | W3, N | .111/11 0 | U alli | others | 5. | | | _ | | Direction | | Average | Get 3 readings & average | | km/h | | knts | | km/h | | knts | | km/h | | kn | | / Dire | 3.1 | Gusts | Record highest gust | | km/h | | knts | | km/h | | knts | | km/h | | kn | | | | | Wind Speed Guide | eline | s for | He | licop | ter F | Flight | Op | erati | ons | | | | | Speed | | 10 knot | ts / 18.5 km/h ideal; OK | to fly | / | | Αŀ | oove | 45 kr | iots / | 83 kr | n/h; l | No fli | ghts. | | | Wind | | Guete abo | ve 20 knots/ 37 km/h: N | lo flic | ahts | | May | tailu | ind 5 | knot | s/6 k | m/hr | No t | ake (| off | | 3 | | Steady Wind | Circle direction steady wind | N | NE | S | SW | N | NE | S | SW | N | NE | S | SV | | <u>ج</u> | 3.2 | Direction | comes FROM | Е | SE | W | NW | E | SE | W | NW | E | SE | W | NW | | ., | 3.2 | Variable Wind | Circle 1 or more directions | N | NE | S | SW | N | NE | S | SW | N | NE | S | SV | | L | | Direction | wind comes FROM | E | SE | W | NW | E | SE | W | NW | E | SE | W | NW | **Using a Wind Tell-Tail to Measure Wind Direction:** You can find information about making a wind tell-tail at www.neighborhoodlink.com/RTC-TH_Tech/pages. Scroll down the left column to the section "RTC-TH REEEPP at Na Fa Elementary School", and look for the PDF title "2005 W-3 Wind Direction." Turn the unit until the tell-tail lines up with the axis The magnetic compass is aligned with the post forming the sighting axis. The Tell-tail string is tied to the top of the post. The wind blows the tell-tail. You turn the compass/post base board until the tell-tail lines up with the sighting axis. Then you read off the magnetic compass direction and record it on the MEWS Log form in Section 3.2. You can use a similar technique with a flag on a flag pole. But in that case, you move to align yourself with the axis of the flag and the flag pole. Aim the compass IN the direction of the wind and take the compass reading. Remember, winds are named for the direction FROM which they come. So if you are facing NE, the wind is called a NE wind. ## 4.0 Sky Conditions 4.1 Cloud Cover: Look at the relative amount of clouds in the sky dome overhead. You try to describe how much of the dome is covered with clouds. This is not the same as looking off in one direction and describing the cloud cover. The photos at the right cannot show the "dome" view but notice the relative amounts of cloud to blue sky. Check the box for the best term that | П | 4.1 | Cloud Cover | | nitions in Cloud
ver Table | □ Clear
□ Scattere | □ Cloud
ed □
Overd | | □ Clear □ Scattered | □ Cloudy
□ Overcast | □ Clear
□ Scatter | □ Cloudy
ed □ Overcast | |----------------|------|---------------|------------------|-------------------------------|-----------------------|------------------------------|--------|---------------------|------------------------|----------------------|---------------------------| | П | | Use local mou | ntain of kno | wn elevation (abo | ove mean s | ea level) | and | report clouds | above, at, o | or below m | ountain top. | | ш | | Cloud Base Ht | Relativ | e to local Mtn | □ Clouds | | | □ Clouds ab | | | above mtn | | ш | 4.2 | (Loc Rel) | | | □ Clouds | | | □ Clouds at | | | at mtn top | | ш | **** | | | m AMSL | □ Clouds | | | □ Clouds be | | □ Clouds | below mtn | | ш | | m | | 1-2.5)/9.8x1000m | | | AGL | | m AGL | | m AGL | | l l | | Mi | n. flight altitu | udes: Day = 160i | | tht - 500 | m A | | ud ceiling = | | | | 8 | | | High | | □ Cirrus | DCul | Nim : | □ Cirrus | ::CuNim | □ Cirrus | . GCuNim | | 울 | | | Middle | Vertically | □ Altostra | | ****** | □ Altostrat | Louisiii | □ Altostra | | | 밀 | 4.3 | Cloud Type | moure | - Developed | □ Altocum | | | □ Altocum | | □ Altocun | 1 | | Sky Conditions | | | Low | Coronopou | □ Stratus | . In Cu | ımul | □ Stratus | D Cumul | □ Stratus | . D Cumul | | 18 | | | | | □ Nimstra | | | □ Nimstrat | | □ Nimstra | it Comme | | 1 | 4.4 | Rainfall | | ure at 0900 hrs e | | | | ount for last 2 | | | mm | | - | | | Name o | f 3.2 km mark | □ more | less the | an | | less than | □ more | □ less than | | ш | | | | | □ Rain | □ Fog | | | Fog | □ Rain | □ Fog | | ш | | Visual Range | | | □ Haze | □ Smoke | | | 3 Smoke | □ Haze | □ Smoke | | ш | 4.5 | (Visibility) | Name | of 5 km mark | □ more | □ less the | an | | less than | □ more | □ less than | | ш | | | | | □ Rain | □ Fog | | | Fog | □ Rain | □ Fog | | ш | | 44.5 | | 1 1/ 10 0 | □ Haze | □ Smoke | | | Smoke | □ Haze | □ Smoke | | l l | | Helicopte | | visibility: Day = . | | | | | | | | | ш | | | Thur | nderstorms | □ Yes | | No | □ Yes | □ No | □ Yes | □ No | | ш | 4.6 | Severe | Lightning | Flash, count secs | | ESSWW! | | NNEESES | | | ESSWWNW | | ΙI | | Weather | a-g m-rg | to boom / 3 | □ Yes | | m | □ Yes | km | □ Yes | km | | ш | | | | Wai | n air crew | s of any | seve | re weather i | n your area | L . | | ## **Sky Condition: Cloud Cover Terms** matches what you see. Clear Sky is blue with no clouds or very few small clouds. Scattered Sky is blue, but small patches of clouds are present. **Broken** Large patches of clouds, but patches of blue sky can be seen between the clouds. Cloudy The sky is covered mostly with clouds and a few blue patches. Overcast Clouds cover the sky; no patches of blue can be seen. **4.2 Cloud Base Height (Ceiling)** is the distance from the ground to the bottom of the lowest layer of clouds. Report this in meters above ground level (m AGL). There are two ways to estimate the cloud base height. The first method is to get the cloud base height generally by the altitude of the cloud ID (see the chart in Section 4.3. | | 4.1 | Cloud Cover | | itions in Cloud
er Table | ☐ Clear ☐ Scattered ☐ Broken | □ Cloudy
□ Overcast | □ Clear □ Scattered □ Broken | □ Cloudy
□ Overcast | ☐ Clear ☐ Scattered ☐ Broken | □ Cloudy
□ Overcast | |----------------|-----|---------------|------------------|-----------------------------|------------------------------|------------------------|------------------------------|------------------------|------------------------------|------------------------| | | | | | wir eievation (abt | | | | | | | | | | Cloud Base Ht | Relative | to local Mtn | □ Clouds ab | | □ Clouds about | | □ Clouds at | | | | 4.2 | (Loc Rel) | | | □ Clouds at | | □ Clouds at r | ntn top | □ Clouds at | | | | 4.2 | | | m AMSL | □ Clouds be | low mtn | □ Clouds bel | ow mtn | □ Clouds be | elow mtn | | | | m | DewCal (2. | 1-2.5)/9.8x1000m | | m AGL | | m AGL | | m AGL | | | | Mi | n. flight altitu | ides: Day = 160i | m AGL; Nigh | t - 500 m A | GL; Low clou | ıd ceiling = | No flights. | | | S | | | High | | □ Cirrus | 0.15 | □ Cirrus | | □ Cirrus | | | 1.5 | | | | T | □ Altostrat | □CuNim | □ Altostrat | □CuNim | □ Altostrat | □CuNim | | 들 | 4.3 | Cloud Type | Middle | Vertically | □ Altocum | | □ Altocum | | □ Altocum | | | 18 | | | | Developed - | □ Stratus | 1 | □ Stratus | 1 ! | □ Stratus | † | | Sky Conditions | | | Low | | □ Nimstrat | □ Cumul | □ Nimstrat | □ Cumul | □ Nimstrat | □ Cumul | | S | 4.4 | Rainfall | Measu | ire at 0900 hrs e | ach morning | Report am | ount for last 2 | 4 hrs | | mm | | 4 | | | | 3 2 km mark | | less than | | less than | □ more □ | less than | | 14 | | | 14411100 | O.E MITTIGHT | | Fog | | Foa | | Foa | | | | Visual Range | | | | Smoke | | Smoke | | Smoke | | | 4.5 | (Visibility) | Name o | of 5 km mark | n more | less than | □ more □ | less than | □ more □ | less than | | | 1.0 | (Viololity) | | | | Foa | | Fog | | Foa | | | | | | | | Smoke | | Smoke | | Smoke | | | ' | Helicopti | er minimum | visibility: Day = 3 | | | | | | | | | | | | derstorms | □ Yes | □ No | □ Yes | □ No | □ Yes | □ No | | 1 | | Severe | | Flash, count secs | N NE E SE S | | N NE E SE S | | N NE E SE | | | | 4.6 | Weather | Lightning | to boom / 3 | □ Yes | km | □ Yes | km | □ Yes | km | | 1 | | | | Wai | n air crews | of any seve | ere weather ii | n vour area | | | **4.21 Relative to a local mountain of known elevation**. Then you can say the clouds are above, below, or at the same height as the peak of the mountain. This is not very precise, but 1) this gives air crews a general idea of the ceiling conditions; 2) it can help them to avoid flying into the mountains; 3) the sky is very dynamic variable that reporting a specific altitude number is not always that useful. ## Cloud Base Height Relative to a Local Mountain Top When using a local mountain as a visual reference for relative cloud base height, be sure to give the name of the mountain and its peak elevation above mean sea level. Write this is the space provided in the upper part of Section 4.2 on the form. It is also helpful to know the distance and direction from the LZ (landing zone) to the mountain. If you have hills or mountains nearby, find out their height. Report the cloud height relative to the mountain top. For example, if the mountain top was at 300 m above sea level, the cloud height would be more than 300 m. **4.2.2 Dew Point Method:** Advanced MEWS Observers determine the height of the cloud base by making a calculation using the Dew Point Temperature. #### Dew Point Temperature Method to Estimate Cloud Base Height (Ceiling) **Step 1.** Get the Air temperature (2.1). Wet Bulb Difference 2.3 Subtract 2.2 from 2.1 Step 2. Subtract the Dew Point temp (2.5) Rel. Humidity Use 2.1, 2.3; R H Table %RH %RH Step 3. Divide the remainder by 10. 2.5 Dew Point Use 2.1, 2.3; Dew Pt Table Step 4. Multiply the quotient by 1000 m. Relative to local Mtn Clouds above mtn Clouds above mtn Step 5. Record the result in the space Cloud Base Clouds at mtn top Clouds at mtn top Height provided (Ceiling) The main concern for flight operations is meeting VFR minimums. Issue an advisory any time the cloud base height is below 160 m in the day or 500 m at night. 4.3 Cloud Type: Clouds are named based on the height at which they are found and their general form. According to height, there are 4 classes of clouds: Use Definitions in Cloud Cover Table Cloud Cover (Loc Rel) 4.2 Sky Conditions Cloud Type Low Name of 3.2 km mar □ Fog □ Fog □ Fog Visual Range 4.5 □ Fog □ Fog Low, Middle, High, and Vertically Developed. See the groupings in the chart below. If using the Cloud ID to estimate the height of the cloud base, use the lower altitude number for the cloud group. When you look into the sky, there may be many different clouds present at the same time. Low and Vertically developed clouds affect helicopter VFR conditions. The main concerns are visibility and turbulence. VFR calls for visibility minimum of 8 km. Rain fall from Middle and Low types of clouds. Turbulence is associated with cumulus and cumulonimbus clouds. The later are the famous clouds of thunderstorms and severe weather (which can include lightning and/or hail). To complete Section 4.3, check the boxes for the types of clouds you see overhead. Keeping good records of the cloud types can help to predict the weather. Changes in the cloud types can indicate if the weather will change to stormy or sunny conditions. Weather forecasting by this simple method is summarized in an lower limit for other cloud types. Flight Advisories: Report flight advisory to air crews for the following conditions. Low Clouds near or at I60m AGL (day); 500m AGL (Night). No flights if below these minimum limits. Reduced Visibility: Smoke, dust, haze, fog reducing visual range to 3.2 km (Day) or 5 km (Night); No flights if below these minimum limits. Severe Weather: Thunderstorms, lightning, heavy rain, excessive winds, or other weather extremes. Appendix at the end of this paper and is the subject of Advanced MEWS Lesson 6. MEWS Observers with digital weather stations or barometric units can usually see a display of a forecast graphic icon. All these forecast methods are about 60-70% accurate. Estimating Cloud Base Height: Identify cloud type; report Low clouds as 2000m, use lower limit for other cloud types. Flight Advisories: Report flight advisory to air crews for the following conditions. Low Clouds near or at I60m AGL (day); 500m AGL (Night). No flights if below these minimum limits. **Reduced Visibility:** Smoke, dust, haze, fog reducing visual range to 3.2 km (Day) or 5 km (Night); No flights if below these minimum limits. **Severe Weather:** Thunderstorms, lightning, heavy rain, excessive winds, or other weather extremes. | | Nama | Claud Description | Α | ltitude | | |------|---------------
--|----------------------|-----------------------|---------------| | Code | Name | Cloud Description | m | ft | | | Ci | Cirrus | Delicate, wispy, feathery; streaky, stringy; slow moving; doesn't block the sun; mares tails—large ice crystals extending down | 6,000 | 20,000 | (e) | | Сс | Cirrocumulus | Thin sheets or closely packed small puffs without shadows;
"mackerel" sky | to
12,000 | to
40,000 | High (Ice) | | Cs | Cirrostratus | Whitish veil, usually fibrous; makes halo around the sun or moon. | 12,000 | 40,000 | 王 | | Ac | Altocumulus | Layer of separate cloud masses; fit closely in geometric pattern; blue sky visible between masses; white or gray on shaded side; associated with bad weather. | 2,000
to | 6,500
to | Middle | | As | Altostratus | Extensive, eve, gray layer over entire sky; gray, smooth bottom; sun is a bright spot; associated with bad weather. | 6,000 | 20,000 | Σ | | St | Stratus | Dense, dark gray layer; uniform base | | | | | Ns | Nimbostratus | Dense, dark gray layer with precipitation (rain or snow); thick enough to block the sun | Ground | Ground | > | | Sc | Stratocumulus | Distinct gray masses (long rolls, right angles to the wind and cloud motion) with patches of open sky, flat tops; often associated with fair or clearing weather; but snow flurries or rain are possible from individual cloud masses. | to
2,000 | to
6,500 | Low | | Cu | Cumulus | White, wooly mass, flat base, lumpy top; gray or dark on shaded side or bottom; small clouds associated with fair weather. | 300
to
1,525 | 1,000
to
5,000 | Vertical Dev. | | Cb | Cumulonimbus | White, anvil shaped top; very dark base; vertical dimension greater than horizontal; heavy rainfall, thunder, lightning, gusty winds, hail possible; strong updrafts | 12, 000
to
300 | 40,000
to
1,000 | Vertica | **4.4 Rainfall:** Rainfall is recorded only 1 time a day (we suggest you do this routinely at 0900 hrs local time). Record the data in Section 4.4 of the MEWS log form. Rainfall data can be used in a number of ways. It can be used to assess additional flooding potential, and landslide hazards. Increased flash flood risk is associated with heavy rainfall in | | $\overline{}$ | | | | | | | | | | |------------|---------------|--|--|--|--|---|--|--|--|--| | | 4.1 | Cloud Cover | | nitions in Cloud
ver Table | □ Clear□ Scatter□ Broken | □ Cloudy
ed □ Overcast | □ Clear □ Scattered □ Broken | □ Cloudy□ Overcast | □ Clear□ Scatter□ Broken | □ Cloudy
ed □ Overcast | | | | Use local mou | ntain of kno | wn elevation (abo | ove mean | sea level) and | report clouds | above, at, o | or below m | ountain top. | | | | Cloud Base Ht | Relative | to local Mtn | □ Clouds | above mtn | □ Clouds ab | ove mtn | □ Clouds | above mtn | | | 4.2 | (Loc Rel) | | | □ Clouds | at mtn top | □ Clouds at | mtn top | □ Clouds | at mtn top | | | 4.2 | | | m AMSL | □ Clouds | below mtn | □ Clouds be | | □ Clouds | below mtn | | | | m | | 1-2.5)/9.8x1000m | | m AGL | | m AGL | | m AGL | | | | Mi | n. flight altitu | ides: Day = 160i | n AGL; Ni | ght – 500 m A | GL; Low clo ι | ıd ceiling = | No flights. | | | S S | | | High | | □ Cirrus | . □CuNim | □ Cirrus | □CuNim | □ Cirrus | . □CuNim | | Conditions | | | Middle | Vertically | □ Altostra | at | □ Altostrat | LICUIVIIII | □ Altostra | t | | 뒫 | 4.3 | Cloud Type | Middle | Developed | □ Altocur | | □ Altocum | | □ Altocum | 1 | | ્ | | | Low | 201010,000 | □ Stratus | □ Cumul | □ Stratus | □ Cumul | □ Stratus | □ Cumul | | Sky | | | | | LI IVIIIIOU | | LI Williotrat | | LI IVIIIIOU a | | | ١,٠, | 4.4 | Rainfall | | | | | | | | | | 1 | | Kalman | | | ach morni | ng Report am | ount for last 2 | 4 hrs | | mm | | 4. | | Kalman | | f 3.2 km mark | □ more | □ less than | □ more □ | less than | □ more | □ less than | | 4 | | | | | □ more
□ Rain | □ less than
□ Fog | □ more □ | less than
Fog | □ Rain | □ less than
□ Fog | | 4. | | Visual Range | Name o | f 3.2 km mark | □ more | □ less than
□ Fog
□ Smoke | □ more □ Rain □ Haze □ | less than
Fog
Smoke | | □ less than
□ Fog
□ Smoke | | 4. | 4.5 | | Name o | | □ more □ Rain □ Haze □ more | □ less than □ Fog □ Smoke □ less than | nmore Rain Haze more | less than
Fog
Smoke
less than | □ Rain □ Haze □ more | □ less than □ Fog □ Smoke □ less than | | 4. | | Visual Range | Name o | f 3.2 km mark | □ more
□ Rain
□ Haze | □ less than
□ Fog
□ Smoke | nmore Rain Haze more | less than
Fog
Smoke | □ Rain
□ Haze | □ less than
□ Fog
□ Smoke | | 4. | | Visual Range
(Visibility) | Name o | f 3.2 km mark
of 5 km mark | more Rain Haze more Rain Haze | less than Fog Smoke less than Fog Smoke | nore Rain Garage More Garage Rain Garage Gar | less than Fog Smoke less than Fog Smoke | □ Rain □ Haze □ more □ Rain □ Haze | less than Fog Smoke less than Fog Smoke | | 4. | | Visual Range
(Visibility) | Name o | f 3.2 km mark | more Rain Haze more Rain Haze | less than Fog Smoke less than Fog Smoke | nore Rain Garage More Garage Rain Garage Gar | less than Fog Smoke less than
Fog Smoke | □ Rain □ Haze □ more □ Rain □ Haze | less than Fog Smoke less than Fog Smoke | | 4. | | Visual Range
(Visibility)
<i>Helicopt</i> | Name o
Name o | f 3.2 km mark of 5 km mark visibility: Day = 3 derstorms | more Rain Haze more Rain Haze Haze | less than Fog Smoke less than Fog Smoke Smoke | more | less than Fog Smoke less than Fog Smoke | Rain Haze Rain Rain Haze Yes | less than Fog Smoke less than Fog Smoke | | 4. | 4.5 | Visual Range
(Visibility) | Name o
Name o
er minimum
Thur | f 3.2 km mark of 5 km mark wisibility: Day = derstorms Flash, count secs | more Rain Haze more Rain Haze Rain Haze | less than Fog Smoke less than Fog Smoke Miles; Night = | more namore namo | less than Fog Smoke less than Fog Smoke S; Low visit | Rain Haze more Rain Haze Rain Haze indicates indicate | less than Fog Smoke less than Fog Smoke | | 4. | | Visual Range
(Visibility)
<i>Helicopt</i> | Name o
Name o | f 3.2 km mark of 5 km mark visibility: Day = derstorms Flash, count secs to boom / 3 | more Rain Haze more Rain Haze Rain Haze Rain Haze Rain Haze N NE E S Yes Yes | less than Fog Smoke less than Fog Smoke Nobe Nobe SES SW W NW | more | less than Fog Smoke less than Fog Smoke Smoke S; Low visit No SWW NW | Rain Haze more Rain Haze Haze Nain Haze Nility = No | less than Fog Smoke less than Fog Smoke | | 4. | 4.5 | Visual Range
(Visibility)
Helicopt
Severe | Name o
Name o
er minimum
Thur | f 3.2 km mark of 5 km mark visibility: Day = derstorms Flash, count secs to boom / 3 | more Rain Haze more Rain Haze Rain Haze Rain Haze Rain Haze N NE E S Yes Yes | less than Fog Smoke less than Fog Smoke Miles; Night = | more | less than Fog Smoke less than Fog Smoke Smoke S; Low visit No SWW NW | Rain Haze more Rain Haze Haze Nain Haze Nility = No | less than Fog Smoke less than Fog Smoke Smoke flights No | a short time span (e.g. intense thunderstorm) especially in mountain areas. General flooding can occur with light rains that fall continuously for a few days. This can cause streams, rivers, dams and reservoirs to overflow. Prolonged light rainfall can also saturate soils and increase the chance of landslides. For survivors, rain can mean additional misery and discomfort. But rain can also be a source of much needed drinking water. [Note: When scouting out locations for possible "safe sites", shelter locations, and landing zones, avoid areas likely to flood or be subject to flash floods and landslides.] ^{© 2011,} G.K. Lee. All rights reserved. Reading the rain gauge will depend on the rain gauge you are using. The RTC-TH has a consumer grade rain gauge purchased from a garden supply shop and a home-made rain gauge made with PVC pipe. If you have a digital weather station system with a rain gauge, you simply record the station's displayed rainfall measurement. The rain water is poured into a graduated cylinder for measuring the amount indirectly from the rain gauge. **Direct Reading of a Rain Gauge:** Reading actual water levels in manual rain gauges (yellow arrow in left photo, above) must be done in a systematic way. Water in the measuring tube does not make a flat even surface. It is slightly curved. The blue is the surface of the water in the rain gauge. The yellow line is the marking on the rain gauge. **Indirect reading of a rain gauge:** First you must empty the rain from the rain gauge into a graduate measuring device. We use a 100 mL graduated cylinder. After reading the water level, we multiply number of milliliters of water by 1000 to get the number of millimeters of rain fall. This is the number to write in Section 4.4 on the MEWS Log form. ## 4.5 Visual Range (Visibility): This is easiest done from maps. If you cannot get topographic maps of your area, try searching the internet or use Goggle Maps. The visual ranges we are concerned about are for helicopter VFR minimum conditions: Day 3.2 km; night 5 km. First locate your operating position on the map. Then search for key landmarks that are 3.2 m and 5 km away. | - | | | | | | | | | | | |------------|-----|------------------------------|--|---|--|--|--|--|---
--| | | 4.1 | Cloud Cover | | itions in Cloud
er Table | □ Clear □ Scatter □ Broken | □ Cloudy
ed □ Overcast | □ Clear□ Scattered□ Broken | □ Cloudy □ Overcast | □ Clear □ Scattere □ Broken | □ Cloudy
ed □ Overcast | | | | Use local mou | ntain of knov | vn elevation (abo | ove mean : | sea level) and | report clouds | above, at, o | or below mo | ountain top. | | | | Cloud Base Ht | Relative | to local Mtn | □ Clouds | above mtn | □ Clouds at | ove mtn | □ Clouds | above mtn | | | 4.2 | (Loc Rel) | | | □ Clouds | at mtn top | □ Clouds at | | □ Clouds : | | | | 4.2 | | | m AMSL | □ Clouds | below mtn | □ Clouds be | | □ Clouds I | below mtn | | | | m | | -2.5)/9.8x1000m | | m AGL | | m AGL | | m AGL | | | | Mi | n. flight altitu | des: Day = 160i | n AGL; N ig | ght – 500 m A | GL; Low clo | ud ceiling = | No flights. | | | SI SI | | | High | | □ Cirrus | . □CuNim | □ Cirrus | □CuNim | □ Cirrus | □CuNim | | Conditions | | | Middle | Vertically | □ Altostra | t | □ Altostrat | Liculatii | □ Altostrat | - LCUIVIIII | | 힏 | 4.3 | Cloud Type | Wilduio | Developed | □ Altocun | 1 | □ Altocum | | □ Altocum | | | ပိ | | | Low | Dovolopou | □ Stratus | □ Cumul | □ Stratus | □ Cumul | □ Stratus | □ Cumul | | Sky | | | LOW | | □ Nimstra | t Douina | □ Nimstrat | - Cumai | □ Nimstrat | . Guilla | | | | | | | | | | | | | | | | r von nom | modec | . o al 0000 lo o | aon monii | ig. Noportain | ount for last. | 211110. | | | | 4. | | rearrien | Name of | 3.2 km mark | □ more | g. Roport am
□ less than | more c | less than | □ more | □ less than | | 4 | | Naman | Name of | 3.2 km mark | □ Rain | □ Fog | □ Rain o | Fog | □ Rain | □ Fog | | 4 | | Visual Range | | | | □ Fog
□ Smoke | □ Rain □ | Fog
Smoke | | □ Fog
□ Smoke | | 4. | 4.5 | Visual Range
(Visibility) | | 3.2 km mark | □ Rain □ Haze □ more | □ Fog □ Smoke □ less than | □ Rain □ Haze □ more □ | Fog
Smoke
less than | □ Rain □ Haze □ more | □ Fog □ Smoke □ less than | | 4. | 4.5 | | | | □ Rain
□ Haze | □ Fog
□ Smoke | □ Rain □ Haze □ more □ | Fog
Smoke | □ Rain
□ Haze | □ Fog
□ Smoke | | 4. | 4.5 | (Visibility) | Name o | f 5 km mark | □ Rain □ Haze □ more □ Rain | □ Fog □ Smoke □ less than □ Fog | Rain Day | Fog
Smoke
less than
Fog | □ Rain □ Haze □ more □ Rain | □ Fog □ Smoke □ less than □ Fog | | 4. | 4.5 | (Visibility) | Name o | | □ Rain □ Haze □ more □ Rain | □ Fog □ Smoke □ less than □ Fog | Rain Day | Fog
Smoke
less than
Fog | □ Rain □ Haze □ more □ Rain | □ Fog □ Smoke □ less than □ Fog | | 4. | 4.5 | (Visibility) | Name o | f 5 km mark | Rain Haze Rain Rain Rain Rain Haze | Fog Smoke less than Fog Smoke Smoke Smoke Smoke Smoke No | Rain de Haze de Rain d | Fog
Smoke
less than
Fog
Smoke
S; Low visit | Rain Haze Rain Rain Haze Rain Haze | Fog Smoke less than Fog Smoke Smoke Smoke Smoke Smoke No | | 4. | - | (Visibility) | Name of the o | of 5 km mark visibility: Day = derstorms Flash, count secs | Rain Haze Rain Rain Rain Rain Haze | □ Fog □ Smoke □ less than □ Fog □ Smoke miles; Night = | Rain d
Haze d
more d
Rain d | Fog
Smoke
less than
Fog
Smoke
S; Low visit | Rain Haze Rain Rain Haze Rain Haze | □ Fog □ Smoke □ less than □ Fog □ Smoke | | 4. | 4.5 | (Visibility) | Name o | of 5 km mark visibility: Day = derstorms Flash, count secs to boom / 3 | Rain Haze more Rain Haze Rain Haze NAZE NES | Fog Smoke less than Fog Smoke Miles; Night = No ESSWWNW km | Rain Day Haze Day Rain Rai | Fog
Smoke
less than
Fog
Smoke
S; Low visit
No
S SW W NW
km | Rain Haze more Rain Haze rility = No | Fog Smoke less than Fog Smoke Smoke Smoke Smoke Smoke No | | 4. | - | (Visibility) Helicopto | Name of the o | of 5 km mark visibility: Day = derstorms Flash, count secs to boom / 3 | Rain Haze more Rain Haze Rain Haze NAZE NES | Fog Smoke less than Fog Smoke Smoke Smoke Might = No E S SW W NW | Rain Day Haze Day Rain Rai | Fog
Smoke
less than
Fog
Smoke
S; Low visit
No
S SW W NW
km | Rain Haze more Rain Haze rility = No | Fog Smoke less than Fog Smoke Smoke Fog Smoke Smoke Fog Smoke Fog Smoke Fog Smoke Fog Smoke Fog Smoke Fog Fo | Ideally this would be readily recognized features: mountain peaks, tall radio towers or buildings. Note their name, coordinates, and for towers, their height above the ground level (AGL). These will be key reference markers for you. When recording the Visual range data, check the box that most closely states the prevailing conditions. - If you can see the landmark or beyond, check "more." - If you cannot see the landmark, check "less." Then check a box to indicate the most likely reason for the loss of visibility: rain, fog (mist), haze, or smoke. In this example, two radio towers can be seen from our farm station. We used Google Earth to measure the distances from the farm station to the towers which are our visual range markers. Other weather characteristics affecting visibility: - High relative humidity can add to haze and obscure vision. - Clouds and rain can limit visibility. - Low cloud base height: Pilots can see about 1.6 km for every 300 m of altitude. If the cloud base is high, they can see farther than if the cloud base were low. Weather is dynamic. From the time a helicopter takes off, the weather can be changing. Nan Province is a mountainous region. Weather in mountain areas can change rapid. It is guite possible for a helicopter to take off from an airport with CAVU (ceiling and visibility unlimited) conditions, and en route or at the destination encounter conditions that severely affect VFR conditions. This is why MEWS Observer reports are important for flight operations. Nan Province has only 3 official government weather stations (Nan Muang 18.76°N, 100.76°E; Thawangpha 19.11°N, 100.8°E, and Tung Chang 19.41°N, 100.88°E). The RTC-TH demonstration farm is about 8-9 km LOS (line of sight) from Thawangpha. But there have been times when heavy rain fell on the farm, yet the Thawangpha station recorded no rain fall that day. This shows how much weather conditions can vary over a short distance. Disasters can damage or destroy existing weather stations. During an emergency, each MEWS Observer is another "weather station" that increases the number of available weather stations. This can be very helpful to authorities. Pilots will certainly agree that it is better to have more weather stations than less. Cloud Cover (Loc Rel) 4.6 Severe Weather: If a thunderstorm is in the area. check the "Yes" box. If none, check "No". For MEWS observers supporting flight operations, turbulence and lightning are primary concerns. Heavy rain is associated with those, and brings with it reduced visibility and wet landing zones to further slow operations. Sky Conditions □ Altostrat Altostrat Altostra Middle 4.3 Cloud Type □ Altocum Altocum Altocum Developed Stratus Nimstrat Nimstrat Nimstrat 4.4 Rainfall morning. Report a Name of 3.2 km mark □ more □ less than more more □ Rain □ Foa Rain □ Foa Rain Visual Range Haze □ Smoke Haze Haze 4.5 Name of 5 km mark (Visibility) □ Fog □ Rain Rain □ Fog Rain Haze Haze □ Yes □ No N NE E SE S SW W NW Yes No □ Yes □ No N NE E SE S SW W NW Lightning □ Clear □ Cloudy □ Scattered □ Overcast mean sea level) ar Clouds above mtr AGL: Night - 500 m A Clouds below mtn Broken □ Clear □ Cloudy □ Scattered □ Overcast Clouds above mtn Clouds below mtn Low cloud ceiling Broken □ Clear □ Cloudy □ Scattered □ Overcast □ Clouds below mtn □ Foa □ Fog □ Smoke Use Definitions in Cloud Cover Table flight altitudes: Day = 16 Use local mountain of known elevation (al Other associated weather conditions are found in - Section 3.1 Wind Speed: - Tail winds (at take off) over 5 knots - Gusts over 20 knots - Winds over 45 knots - Section
4.2 Cloud Base Height: - o Day: ceiling less than 160 m - Night: ceiling less than 500 m - Section 4.3 Cloud Type: Cumulonimbus (Thunderstorm); Nimbostratus (rain clouds) - Section 4.5 Visual Range: - Day: less than 3.2 km - Night: less than 5 km Lightning is of particular concern for MEWS reporting. Lightning poses a life threatening condition for amateur radio operators, their equipment and for flight crews and aircraft. ^{© 2011,} G.K. Lee. All rights reserved. If you have a lightning detector, be sure it is positioned away from any radio frequency source. Close proximity to RF sources can give false readings. If you do not have a lightning detector, use the "Flash-Boom" method to estimate the distance of the thunderstorm. Once you have a distance to the thunderstorm, write it on the lower line of Section 4.6 on the MEWS Log form. **NOTE:** When a thunderstorm is 9.5 km from your position: - Immediately remove your headset. - Transmit a message that you need to stop transmitting due to lightning. State what frequency you will resume transmitting when it is safe to do so. (This is about 30 minutes AFTER the last sign of thunder/lightning). - Shut down your station. - Disconnect the coax to the radio and ground the coax to the station bus panel (i.e. the point closest to the main lightning ground rod for the station. - Seek shelter in an enclosed building with steel frame or a vehicle with the windows rolled up. # Note 2: Hail is considered to be "precipitation", the broad term for any form of water falling from clouds in the atmosphere. Hail may occur in some very intense thunderstorms. This has occurred in other parts of northern Thailand in recent years. But this is not a common occurrence here. The MEWS Log form doesn't have space to record hail. If hail does occur, make a note of it and immediately issue a flight advisory to report it. If possible, give the diameter size of the hail stones. Use the terms "light" (hail sits on the ground but sparsely covers the ground or melts quickly), "moderate" (hail sits on the ground but seems to cover about half the surface and melts); "heavy" (hail sits on the ground causing it to look mostly white and does melts very slowly). ## Lightning / Thunder (Flash-Boom Method) **Step 1**. Watch for lightning flash; count seconds (Time) until hearing the thunderclap. **Step 2**. Use the reference table below or divide the Time (in seconds) from Step 1 by: - 3 to get the distance in kilometers (km) - 5 to get the distance in miles (mi) **Lightning Hazard:** When the flash and thunderclap are almost instantaneous, you may be in trouble. People have been struck by lightning 48+ km away from a thunderstorm, some of them while under clear blue skies! Report thunderstorms and lightning to all air crews and shut down your station. | ni
20 | |---| | 20 | | 20 | | 40 | | 60 | | 30 | | 00 | | 20 | | 40 | | 60 | | 30 | | 00 | | (| ^{© 2011,} G.K. Lee. All rights reserved. # **Appendix 1: Weather Observation Equipment** | | Observat | ion | Instrument / Reference Chart | | | | | | |--------------------|---------------|--------------|--|--|--|--|--|--| | | Temper | rature | Thermometer Dual scale (°C / °F) can be helpful in international operations when helicopter pilots coming from different countries. | | | | | | | uipment | Wind S | peed | Use reference chart or wind speed gauge (Use the reference chart to convert mph wind speed values to knots. Air crews usually report wind speed in knots.) | | | | | | | Basic Equipment | Wind Dir | rection | Magnetic compass and reference chart (Keep it simple and report all directions as magnetic to avoid errors when trying to adjust to True North readings.) | | | | | | | | Cky Condition | Cloud Cover | Use reference chart | | | | | | | | Sky Condition | Cloud Height | Relative to local mountain | | | | | | | | Rain | fall | Medium sized empty glass jar and a ruler | | | | | | | | Visib | ility | Relative to a local mountain or object from topographic map | | | | | | | | Eleva | | Topographic map | | | | | | | Advanced Equipment | Relative F | Humidity | Hygrometer or dry bulb/wet bulb thermometer | | | | | | | /anc | Comfort | Heat Stress | Relative humidity and temperature data and reference chart | | | | | | | Adv | Temperature | Wind Chill | Relative humidity and wind speed and reference chart. | | | | | | ## **Appendix 2: Weather Forecasting** ## Clouds of Fair Weather ## Rainy Weather Clouds # Clouds Foretelling Weather Change Weather Forecasting by Barometric Pressure Change | Pressure
Trend | Clear / Fair
Weather | Changing
Weather | Stormy / Rainy
Weather | |-------------------|-------------------------|-----------------------------------|-------------------------------| | Rising | Fair weather ahead | | | | Steady | | No change from
present weather | | | Falling | | | Cloudy/rainy weather
ahead | | Pressure
Change | Descriptive Details | |--------------------|----------------------------------| | Fast | More than 6 mb change in 3 hours | | Moderately | 3-6 mb change in 3 hours | | Slowly | Less than 3 mb change in 3 hours | | Steady | Little or no change | **Weather Forecasting by Pressure / Wind Changes** | | | , , | are / Willa Change | | | | |-----------------|-------------------|----------------|--|--|--|--| | Psu (mb) | Psu Trend | Wind
Change | Forecast | | | | | | Steady | | Fair for 1-2 days | | | | | | Rising Fast | | Fair; warmer temps and rain in 2 days | | | | | 1020-
1024 | Falling
Slowly | | Warmer with rain 24-36 hrs | | | | | | Falling Fast | SW to NW | Warmer with rain 18-24 hrs | | | | | 1024+ | Steady | | Continued fair | | | | | 1024+ | Falling
Slowly | | Slow temp increase; fair for 2 days | | | | | | Falling Slowly | | Rain in 24 hrs | | | | | 1020- | Falling Fast | S to SE | Increasing winds; rain in 12-24 hrs. | | | | | 1024 | Falling Slowly | | Rain in 18-24 hrs. | | | | | | Falling Fast | SE to NE | Increasing winds; rain in 12 hrs | | | | | | Falling Slowly | | Summer: light wind, no rain for several days.
Winter: rain in 24 hrs | | | | | 1020 + | Falling Fast | E to NE | Summer: rain in 12-24
hrs.
Winter: rain; increasing
winds from NE | | | | | Psu (mb) | Psu Trend | Wind
Change | Forecast | | | | | | Falling Slowly | SE to NE | Rain continues 1-2 days | | | | | 1019 or
less | Falling Fast | SE IO NE | Rain, high winds; clearing in 24 hrs | | | | | | Rising Slowly | S to SW | Clearing in a few hrs; continues several days | | | | | | Falling Fast | S to E | Severe storm; clearing in 24 hrs | | | | | 1009 or
less | Falling Fast | E to N | Severe storm; cooler temperatures follow | | | | | | Rising Fast | Going to W | Clearing; colder temperatures | | | | ## **Appendix 3: Conversion References** | Wind Speed Conversion Table | | | | | | | | | | | |---|---|-------|--|-----|-------------|--------------------------------------|--|-----|--------|-------| | mph | km/h | knots | | mph | km/h | knots | | mph | km/h | knots | | 1 | 1.61 | 0.869 | | 9 | 14.48 | 7.821 | | 45 | 71.42 | 39.10 | | 2 | 3.22 | 1.738 | | 10 | 16.09 | 8.69 | | 50 | 80.47 | 43.45 | | 3 | 4.83 | 2.607 | | 15 | 24.14 | 13.03 | | 55 | 88.51 | 47.79 | | 4 | 6.44 | 3.476 | | 20 | 32.19 | 17.38 | | 60 | 96.56 | 52.14 | | 5 | 8.05 | 4.345 | | 25 | 40.23 | 21.72 | | 65 | 104.60 | 56.48 | | 6 | 9.66 | 5.214 | | 30 | 48.28 | 26.07 | | 70 | 112.70 | 60.83 | | 7 | 11.27 | 6.083 | | 35 | 56.33 | 30.41 | | 75 | 120.70 | 65.17 | | 8 | 12.87 | 6.592 | | 40 | 64.37 | 34.76 | | 80 | 128.70 | 69.52 | | | Report wind speeds in knots to air crews. | | | | | | | | | | | Wind Speed Guidelines for Helicopter Flight Operations | | | | | | | | | | | | 10 knots / 18.5 km/h ideal; OK to fly | | | | | Abov | Above 45 knots / 83 km/h; No Flights | | | | | | Gusts above 20 knots / 37 km/h; No Flights Max tailwind 5 knots / 6 km/h; No take off. | | | | | o take off. | | | | | | | Advise air crews when wind velocities approach guideline limits. | | | | | | | | | | | ## **Appendix 4: Notes on Supporting Flight Operations** ## Landing Zones (LZ) **Elevation of the Landing Zone:** Report the elevation of the landing zone in meters above mean sea level. You will need to get before an emergency by scouting out possible locations using a topographic map or talk with a surveyor or government official to get the elevation information. This is important because helicopters will probably be used in the emergency relief operations. The elevation information is especially important in mountain areas as some helicopters have operational flight altitude limitations, especially when carrying cargo. **Vertical Obstructions:** Report all vertical obstruction relative to landing spot. Give detailed description of the type of hazard, height (AGL), distance / azimuth from landing spot (or use "clock" hour positions relative to the landing spot. NOTE: Power and utility wires are very hard to spot from the air (especially at night). If possible, mark the poles with red lights. ## **General LZ Summary Notes:** - General LZ about the size of a football field (33 m wide X 100 m long; 100 ft X 300 ft) - Max slope 7% (1 m up-down / 100 m); firm surface preferred or short grass (<30 cm); helicopter should land heading UPSLOPE. - Report vertical obstructions by azimuth, distance from LZ center and relative to approach / departure paths; secure all loose debris that can be blown around by rotor wash. - Describe LZ type (see section below or describe landing surface) by radio if possible - Approach: give magnetic azimuth inbound
and approach path length. - Depart: give magnetic azimuth outbound and departure path length. | (t) | [See notes for details of 1-way and 2-way approach / departure patterns.] | | | | | | |-------------------|---|-------|--|--|--|--| | LZ (Landing Zone) | SI: | Day | Remove all loose debris that can be blown by rotor wash. No tree stumps taller than 12 in / 30 cm; no tall grasses / shrubs | | | | | | LZ Preparations: | Night | Turn off all rotating beacons and strobe lights. Red illumination of hazards and 4 corners of the touchdown pad If vehicle lights used to illuminate LZ, 2 vehicles, low beams only, aim lights upwind to landing signal officer; opposed 45° angle to for X at landing pad center (120 ft / 40 m). Key is to NOT have lights shining at the pilot when helicopter is approaching, landing, or taking off. | | | | | | Types | IGE | (In Ground Effect): Helicopter is at an altitude below rotor diameter. | | | | | | | | (Out of Ground Effect): Helicopter is at an altitude above rotor diameter (esp. over | | | | | | | t | all grass, water, and some types of rough terrain. | | | | | | 77 | | er Hole: Limited landing zone requiring nearly vertical takeoff / landing. Avoid this | | | | | | | t | ype of LZ as much as possible. | | | | | | | | | | | |