Department of Fisheries & Aquatic Sciences 7922 NW 71st Street P.O. Box 110600 Gainesville, FL 32653-3071 352-392-4817 800-525-3928 Dear Friend of LAKEWATCH, July 11, 2007 Florida LAKEWATCH records show that Crescent in Pinellas County has been sampled by LAKEWATCH volunteers for a total of 3 months. The raw data are enclosed in this Data Report as tables and graphs. As you look through the Data Report, you may ask "What do these numbers mean?" or "How can this information be useful to me?" We've provided you with the following summaries that describe two common ways in which your LAKEWATCH data can be used. The first summary, the Trophic State Summary describes how and why Crescent is classified into one of four categories called Trophic States. The second summary, Florida Lake Regions Summary, places Crescent into one of forty-seven Florida Lake Regions. In addition to these summaries the following handouts are available upon request or can be downloaded from our web page if you would like more information about how to interpret the data, trophic states or lake regions: - ➤ Explanation of the Florida LAKEWATCH Data Packet leads you through the tables and graphs and shows you how to spot trends and patterns; - > Trophic State: A Waterbody's Ability to Support Plants, Fish, and Wildlife— explains the four trophic states used by the Florida LAKEWATCH program; - Florida Lake Regions: A Classification System explains the development of 47 Florida Lake Regions and discusses why it's important for you to know which Lake Region your lake is in. We realize that this is a lot of reading material. However, being familiar with this information can help you become more effective in the water management arena. For example, you can communicate more effectively with water management professionals; develop management goals for your water body; establish a baseline of water chemistry for future reference; or document changes that might be occurring. We encourage you to share information from your data packet with others so they can become better informed. We can provide data in printed form, on computer disk, or via e-mail. Please don't hesitate to call us with your questions or comments. Sincerely, Eric J. Schulz Florida LAKEWATCH Regional Coordinator **Enclosures** # **Trophic State* Summary** Crescent has been sampled in the Florida LAKEWATCH program for a total of 3 months. To determine the trophic state classification for Crescent we calculated averages from January 17, 2007 to March 15, 2007 for each of the four LAKEWATCH water chemistry parameters (total chlorophyll, total phosphorus, total nitrogen, and water clarity) and compared those averages with the four Trophic State ranges*. The results are as follows: - \triangleright total chlorophyll for Crescent is 59 μ g/L which falls in the **hypereutrophic** range. - \triangleright total phosphorus for Crescent is 206 μ g/L which falls in the **hypereutrophic** range. - \triangleright total nitrogen for Crescent is 1482 μ g/L which falls in the **eutrophic** range. - > water clarity for Crescentis 4.7 feet which falls in the **eutrophic** range. ### How LAKEWATCH Determines Your Waterbody's Trophic Classification It's possible that one or more of the four water chemistry parameters used above fell into different trophic ranges. (For example, a waterbody may have water clarity in the *oligotrophic* range, and its total nitrogen levels may be in the *eutrophic* range.) When one or more of the four LAKEWATCH parameters falls into different trophic ranges, **LAKEWATCH** uses the total chlorophyll averages to determine the overall trophic state. Since the total chlorophyll measurement indicates how much algae is actually being produced in a waterbody, it's the most direct indicator of biological productivity. The other three parameters are more limited in that they only provide information about the *potential* for biological productivity. Don't be alarmed if LAKEWATCH parameters for your waterbody fall into different trophic ranges. If this happens, it simply suggests that you might want to take a closer look to determine why. Feel free to talk with the LAKEWATCH staff to see if there is cause for concern or if perhaps further study is warranted. * These criteria were developed by two lake scientists, Forsberg and Ryding in 1980. For more information, see the Trophic State: A Waterbody's Ability to Support Plants, Fish, and Wildlife handout. ## Florida Lake Regions* Summary #### Which Lake Region is Crescent in? #### Crescent is located in the Pinellas Peninsula Region which is described as: The coastal geology changes in this region from the exposed limestone to the north to deeply weathered sand hills to sand and shells. Besides the coastal strand, the natural vegetation consisted of longleaf pine/xerophytic oak on the north and west, and pine flatwoods on the southeast. The dominant characteristic of the region now is Clearwater/St. Petersburg urbanization. Several small lakes are found in this region. They are high nutrient lakes. This may be a result of naturally occurring phosphoritic pebbles in the geology, as well as anthropogenic impacts. #### How does Crescent compare to other lakes in its region? Crescent has been sampled by LAKEWATCH volunteers from January 17, 2007 to March 15, 2007 for a total of 3 months. An average has been calculated for each parameter sampled (total phosphorus, total nitrogen, total chlorophyll, and water clarity or "Secchi Depth" and is referred to in the table below as the "Average for Crescent". Averages were also calculated for other lakes in the Pinellas Peninsula Region. These averages have been grouped into ranges from low to high and are shown in the table below. Using the table, you can see how Crescent compares to other water bodies in this region. | Pinellas Peninsula Region | | | | | |---|-------------------------------|-----------------------------|--------------------------------|-------------------------| | | Total
Phosphorus
(µg/L) | Total
Nitrogen
(µg/L) | Total
Chlorophyll
(µg/L) | Secchi
Depth
(ft) | | Average for Crescent | 206 | 1482 | 59 | 4.7 | | Low Range ¹ | 14 - 78 | 545 - 930 | 4 - 45 | 1 - 1.3 | | Low to Middle Range ² | 78 - 87 | 930 - 1370 | 45 - 49 | 1.3 - 3 | | Middle to High Range ³ | 87 - 98 | 1370 - 1837 | 49 - 61 | 3 - 3.9 | | High Range ⁴ | 98 - 122 | 1837 - 2330 | 61 - 67 | 3.9 - 10.5 | | Number of lakes used to define each range | 6 | 6 | 6 | 6 | Keep in mind that if the number of lakes that were used to define each range (shown in the bottom row of the table) is small, the range of water chemistry conditions listed may not present an accurate picture of your Lake Region's typical characteristics. Don't be alarmed if Crescent is at one end of the spectrum (High Range or Low Range) or perhaps outside the range altogether. The existence of an extremely high or low value merely indicates there are factors you might want to take a closer look at in order to identify the cause. If you have a concern, we encourage you to talk with the LAKEWATCH staff about it. ¹Low range represents the minimum value to 25th percentile. This means that 75% of the lakes sampled in this study have values higher than Crescent. ²Low to middle range represents the 25th to 50th percentile. This means that 50% of the lakes sampled in this study have values higher than Crescent, and at least 25% of the lakes sampled have values lower. ³Middle to high range represents the 50th to 75th percentile. This means that 25% of the lakes sampled in this study have values higher than Crescent, and at least 50% of the lakes sampled have values lower. ⁴High range represents the 75th to maximum value. This means that at least 75% of the lakes sampled in this study have values lower than Crescent. ^{*} This classification system was created by grouping lakes based on similarities in physiography, geology, soils, hydrology, water chemistry, vegetation, and climate. This project resulted in the definition of 47 regions, which are described in a final report Lake Regions of Florida (Griffith, G.E., et al. 1997), published by the U.S. EPA (EPA/R-97/127). For more information see the Florida Lake Regions Classification System handout.